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Abstract

Advances in sensor technology necessitate fast and accurate methods to deal with

an ever growing wellspring of information. Anomaly detection algorithms for hyper-

spectral imagery (HSI) are an important first step in the analysis chain which can re-

duce the overall amount of data to be processed. The actual amount of data reduced

depends greatly on the accuracy of the anomaly detection algorithm implemented.

Most, if not all, anomaly detection algorithms require a user to identify initial param-

eters. These parameters, or controls, affect overall algorithm performance. Regardless

of the anomaly detector being utilized, algorithm performance is often negatively im-

pacted by uncontrollable noise factors which introduce additional variance into the

process. In the case of HSI, the noise variables are embedded in the image under

consideration. Robust parameter design (RPD) offers a method to model the con-

trols as well as the noise variables and identify robust parameters. This research

identifies image noise characteristics necessary to perform RPD on HSI. Additionally,

a new data splitting algorithm to predict classifier performance with sparse data sets

is presented. Finally, the standard RPD model is extended to consider higher order

noise coefficients. Mean and variance RPD models are optimized in a dual response

function. Results are presented from simulations as well as applications involving two

anomaly detection algorithms, the Reed-Xiaoli anomaly detector and the autonomous

global anomaly detector.
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OPTIMIZED HYPERSPECTRAL IMAGERY ANOMALY DETECTION

THROUGH ROBUST PARAMETER DESIGN

I. Introduction

1.1 Motivation

The advent of the space age, typically credited to the Soviet Union’s launch of

Sputnik in October 1957, the emergence of the digital computer and the inception

of pattern recognition technology energized a desire to better understand how ob-

servations from space could be utilized to perform numerous tasks from weather

observations to managing finite Earth resources through imagery. Imagery collected

from space could cover large areas. However, the resolution required to provide image

quality data from space capable of discerning very minute spatial characteristics would

be too expensive and the amount of data overwhelming. Spectral variations across

several bandwidths collected through multispectral imaging became an appealing di-

mensionality reduction method [47]. Hyperspectral imagery (HSI), collected from

more than just spaceborne sensors, has since emerged as a valuable tool supporting

numerous military and commercial missions ranging from identifying enemy vehicles

to detecting oil spills and even cancer.

A hyperspectral image, also called an image cube, consists of k spectral bands of

an m by n spatial pixel representation of a sensed area. Each pixel in the spectral

dimension represents an intensity of energy reflected back to the sensor. Taken to-

gether, these spectral dimensions represent a pixel signature. HSI, by its very nature,

can provide a method for identifying at most (d − 1) unique spectral signals, where
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d is the number of independent bands in an HSI image cube. This is (d − 1) rather

than d because one band is used to define the background or noise present in an

image. Since HSI contains typically hundreds of bands, the number of spectral bands

for classification can be large although “high dimensional space is mostly empty” [49,

pg. 250]. For instance, spectral bands affected by atmospheric absorption contain

little useful information and must be removed; bands that are close to each other are

typically correlated and provide little to no additional information.

HSI classification processes can be loosely categorized into three types: anomaly

detection, signature matching and change detection [27]. All three classification pro-

cesses attempt to classify individual image pixels into specific categories using sta-

tistical, physical or heuristic methods. An anomaly detector is an HSI classification

algorithm which attempts to identify pixels that are different from surrounding pixels,

or background, as anomalies. Signature matching compares the spectra for a partic-

ular pixel with known spectra for materials contained in a spectral library. Change

detection identifies changes within a scene occurring over time. Change detection

techniques can be performed with or without knowledge of a spectral library [27].

Anomaly detection algorithms are the easiest classification algorithms to implement

as they require no a priori signature information and are the focus of this research. It

is assumed that images are collected in a rural environment and that true anomalies

(man-made objects) are sparse with distinct spectral compositions.

Robust HSI classification algorithms are necessary to counter environmental and

other effects. For instance, optimal anomaly detection algorithm parameter settings

for a particular background, such as desert, might be completely inappropriate for

other backgrounds, such as forest. Landgrebe [48] summarized this concept for future

hyperspectral algorithms:
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...what is needed is an analysis process that is robust in the sense that it
would work effectively for data of a wide variety of scenes and conditions,
and can be used effectively by users rather than only by producers of the
technology. The algorithms do not need to be simple, but they must be
simple to apply and robust against user problems [48, pg. 419].

Design of experiments methods such as robust parameter design (RPD) can be

applied to reduce the overall variations due to image and sensor noise for a selected

set of parameters. While robust parameters can reduce classifier variability within

a given region of exploration, oftentimes users of the algorithm will attempt to use

the classifier outside of the specified region. In the context of anomaly detection for

HSI, the algorithm might encounter an image that is “noisier” than the images used

in training [53]. Thus, RPD models for anomaly detection algorithms must not only

be robust within the design space but also have good extrapolation properties [79].

1.2 Description of Research

The research presented in this dissertation is comprised of three primary focus

areas: defining HSI noise variables for RPD, selecting training and test sets when

small sample size is encountered and expanding the standard RPD model to consider

higher order noise coefficients. These research areas are applied to anomaly detection

algorithms but have uses in signature matching as well as a broader generalization to

RPD applications. Figure 1.1 combines all three areas in a single research collection.

Shaded boxes represent research areas which are described in more detail in the rest

of this Section. Numbers in the upper right-hand corner of shaded boxes correspond

to the specific area being addressed.

In Figure 1.1, RPD is broken into processes for training and test. The RPD train-

ing process estimates a model, ŷ, approximating the true classifier response, y. The

true response is a function of control variables, x, and training image noise variables,

ztr. Optimal control settings, x∗, are identified for a given objective function. The
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Figure 1.1. Dissertation research focus areas.

4



test process creates additional responses, y, using the optimal control settings, x∗,

and test image noise variables, zte. Measures of error for x∗ are used to assess control

setting robustness.

The first research area presents a method to uniquely characterize images based on

three observable features. Here, certain image features are considered noise variables

for RPD models; these characteristics are fixed for a given set of training images, but

it is unknown whether all future images will fall within the range of image noise as

defined by the training images.

The next area addresses model validation through data splitting. If the set of

images available to train the classifier were known to represent all possible noise likely

to be observed within an image, training set selection could focus on sets that cover

the entire range of potential image noise values. The CADEX algorithm, created

by Kennard and Stone [39], selects training sets in this manner. However, since

the images (RPD noise variables) used to train the anomaly detection algorithm are

not guaranteed to represent every type of hyperspectral image encountered by the

classifier, training and test sets of images should be created that “cover approximately

the same region and have similar statistical properties” [79, pg. 421]. The DUPLEX

algorithm suggested by Kennard [79] creates these similar sets, but the DUPLEX

algorithm is intended for problems with large sample sizes. Snee only suggests data

splitting when the total number of data points (N) is at least

N ≥ 2p+ 25 (1.1)

where p is the “largest number of coefficients one believes will be required to describe

the response” [79, pg. 422]. Frequently, the number of images available to train

the anomaly detection algorithms falls below this threshold. Many examples exist

in the literature with similar small sample size problems [7, 6, 16, 17, 35, 52, 68,
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74, 90, 89]. To meet analysis needs, a small sample size training and test selection

(SSTATS) method is proposed. This method yields training and test sets that are

more representative of one another as assessed by three measures: location, fit and

representative error. The SSTATS method can be generalized for use in any problem

with small sample size when model validation and prediction are important.

The final research area extends the traditional RPD model. Standard RPD models

consider quadratic control terms but assume first order noise terms and control by

noise interactions are the only significant noise factors. This assumption was found

lacking in an RPD of an anomaly detector. As a result, higher order noise terms are

considered and appropriate expected value and variance models are created. These

models can be applied to any RPD problem.

1.3 Literature Review of the Topic

The general goal of this research is the identification of robust parameters for

anomaly detection algorithms which are capable of consistent performance across a

wide variety of images. To this end, this Section presents a broad literature review

encompassing overarching concepts germane to this research. Hyperspectral imagery

data collection and processing processes are highlighted. Next, anomaly detection

algorithm concepts are discussed. Finally, robust parameter design is reviewed in-

cluding dual response optimization routines. Additional literature review topics are

presented in Chapters 2 and 3.

1.3.1 Hyperspectral Imagery.

Hyperspectral sensors utilize information typically collected across contiguous re-

gions of the visible, near-infrared and mid-infrared portions of the electromagnetic

spectrum. Hyperspectral remote sensing combines panchromatic imaging and spec-
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trometry. Panchromatic imaging focuses on the spatial characteristics of a scene

relating to the distribution of the irradiance emitted or reflected over a given spectral

band. Spectrometry measures spectral variations of a particular pixel in irradiance.

Hyperspectral sensors are capable of collecting both spatial and spectral data simulta-

neously [27]. Hyperspectral data can then be exploited to remotely identify materials

based on their unique spectral compositions [54]. The broad spectrum collected goes

beyond the visible spectrum providing more information for classification algorithms

to process. For instance, green vegetation has a low reflectance percentage in the

visible regions and a much higher reflectance percentage in the infra-red bands of the

spectrum where green vegetation actually appears red. Thus, the “health, vigor and

canopy cover of green vegetation” [54, pg. 13] can be assessed. In a military context,

the infra-red spectral bands can be used to separate green vegetation from camouflage

netting. This ability to remotely extract and characterize individual pixels within an

image has led to numerous applications including mineral mapping [43], land cover

classification [5, 31, 33, 48], urban area classification [8, 70], coastal environment and

water quality [11, 21, 61], bathymetry [1], mine detection [92], drug and pollution

detection and enforcement [20, 28, 44] and search and rescue applications [27].

Hyperspectral image cubes are generated by collecting the pupil-plane spectral

radiance from a spectrometer for each pixel location in an image. A common method

of scanning an image to create a 2-dimensional spatial region from airborne or space-

based platforms is the push broom imaging approach. In this instance, a spectrometer

measures spectral variations for a row of pixels forming a line image at each instance.

As the platform moves, new line images are collected and stored until a complete

image hypercube is created [27]. The physical dimensions of each individual pixel

represent the spatial resolution of the hyperspectral sensor [49].

Complications arise in HSI due to perturbations from environmental and sensor
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influences such as weather, time of day, relative humidity, detector response char-

acteristics and imaging angle. These influences greatly impact the reflectance val-

ues observed by a sensor requiring sensor calibration and atmospheric compensation

techniques to be applied. It is common to apply statistical processing methods to

compensate for these issues [27]. Some atmospheric compensation techniques include

the empirical line method [77] and the moderate resolution atmospheric transmit-

tance and radiance code (MODTRAN) [9]. Calibration can also be performed using

onboard references [91] or other sources [32].

Hyperspectral data requires preprocessing steps before many classification algo-

rithms can be implemented. The most important first step is reducing the dimen-

sionality of the data. Harsanyi and Chang [34] stated most images can actually be

described by a small number of dimensions known as the intrinsic dimensionality.

This is done by first removing atmospheric absorbtion spectral bands in which most

of the energy is absorbed by the atmosphere. Next, principal component analysis

(PCA) is often performed to transform the data and reduce the dimensionality into

uncorrelated linear combinations of vectors accounting for as much variability in the

original data set as possible. The first principal component accounts for the greatest

amount of overall variability and subsequent ordered principal components account

for successively less variability [24]. A decision must be made to select the num-

ber of principal components to retain. Oftentimes, a combined total percentage of

variability is selected as a threshold to identify the specified number of components.

Another approach considers the number of endmembers or spectrally distinct sources

estimated within an image. Chang [15] states that estimating the true number of

spectrally distinct signal sources in an HSI image is difficult. Particularly, when well

structured high-dimensional data are encountered, the data tend to be distributed in

a much lower dimensional space.
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Independent component analysis (ICA) is another transformation commonly ap-

plied to HSI data. As the name implies, ICA is intended to recover independent

sources from unknown linear mixtures of unobserved independent sources or spectra

[87]. It is assumed that the true spectra are statistically independent with non-

Gaussian distributions and combined through a linear mixture when collected by a

hyperspectral sensor. Further, it is assumed that there are at least as many spectral

bands as true endmembers within an image. Assume there are n linear mixtures,

x = (x1, x2, . . . , xn)T , of n independent components. Also, consider n random vec-

tors, s = (s1, s2, . . . , sn)T , representing “latent variables” [36] meaning the random

vectors cannot be directly observed. In matrix form, the problem becomes

x = As (1.2)

where A is an assumed unknown n× n linear mixture matrix. Estimating for A and

inverting yields W which can then be used to solve for the latent variables in the

following manner [36]:

s = Wx. (1.3)

Methods of solving for the inverse of the mixing matrix, W , can involve complex

computations such as solving for the negentropy, measuring a random variable’s en-

tropy in comparison with a Gaussian variable. A negentropy of zero indicates the

random variable is distributed approximately Gaussian while positive values indicate

non-Gaussian distributions [36].

1.3.2 Anomaly Detection.

Anomaly detectors, also known as outlier detectors or novelty detectors, are HSI

classifiers used to detect objects that are statistically or geometrically different from
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the image background [27]. Anomalies are identified based on a background model,

either local or global. Local background models compare each pixel with neighboring

pixels providing the ability to identify isolated targets in the open. This charac-

teristic makes local background models susceptible to false alarms if true anomalies

encompass a vast majority of the neighborhood used to describe the neighborhood

background. Global background models compare pixels with an estimate of the back-

ground of the entire image or a large area of the image. Global models minimize the

false alarm rate observed in local background models. However, the global background

models can have a difficult time identifying isolated targets [81].

A common assumption for anomaly detectors, whether the local or global back-

ground model is used, is that the hyperspectral data follow a Gaussian distribution.

The generalized likelihood ratio test is often applied to test for the existence of anoma-

lies within an image [81]. Some local background models are the Reed-Xiaoli (RX)

[67] detector (described further in Chapter II), the locally adaptive iterative RX de-

tector [84], the support vector data description (SVDD) [7] as well as numerous other

variations of the RX detector. Some examples of global background models include

the Gaussian mixture model generalized likelihood ratio test (GMM-GLRT) [80], or-

thogonal subspace projection RX [13] and the autonomous global anomaly detector

(AutoGAD) [37] (described further in Chapter III). Additional anomaly detection al-

gorithms based on concepts such as Bayesian classifiers, clustering, kernels and other

methods are found in the literature [4, 12, 26, 30, 76].

At the most basic level, anomaly detection applications can be considered a “bi-

nary hypothesis testing problem” [54]. Expanding mathematically on the anomaly

detection concept, consider a generic anomaly detection system, A, with a forced de-

cision mapping an event, e ∈ E , first to a feature vector, f ∈ F , then to a label, l ∈ L.

There are two possible mutually exclusive events, Fpresent or Fnot resulting in two pos-
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sible mutually exclusive labels, L = {p, np} where p and np denote present and not

present respectively. Consider features f (1), f (2) ∈ F such that f (1) 6= f (2) where f (1)

maps to label p and f (2) maps to label np. Next, consider a new event, e ∈ E , yielding

a feature vector f ∈ F for which a label is to be assigned using the anomaly detection

system, A, and a metric d ∈ D denoting any metric defined on the set of features,

F with D representing all possible metrics where D = {d : F2 → R|d is a metric}.

The truth mapping from any feature vector, f ∈ F , to a label, l ∈ L, is defined as

T . This process shown in Figure 1.2 represents an anomaly detection problem. The

Figure 1.2. Target detection problem.

anomaly detection system, A : F → L, is then defined as [86]:

A(f) =

 p if d(f, f (1)) < d(f, f (2))

np if d(f, f (1)) ≥ d(f, f (2))
(1.4)

1.3.3 Robust Parameter Design.

Genichi Taguchi proposed an innovative parameter design approach for reducing

variation in products and processes in the 1980’s. His methods were quickly adopted

across several industries but eventually met with contention over several issues such as
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confounding and experimental design size, to name a few [63]. As a result, a response

surface approach was also developed. Taguchi’s methods are still applied and thus

both methods will be described in more detail in the sections that follow. Taguchi’s

methods are especially useful when the true model is expected to be first order in

both control and noise variables with control by noise interactions [59].

Montgomery [59] describes RPD as an approach to experimental design that fo-

cuses on selecting control factor settings that optimize a selected response while min-

imizing the variance due to noise factors. Control factors are those factors that can

be modified in practice while noise factors are unexplained or uncontrollable in prac-

tice. These noise factors can typically be controlled during research and development

allowing RPD to be performed. Some cited examples of noise factors are environmen-

tal factors such as temperature or relative humidity, properties of raw materials and

process variables difficult to control or maintain at a specified target. Montgomery

[59] further identified four focuses for RPD:

1. Design systems that are insensitive to environmental factors that can affect

performance once the system is deployed.

2. Design products insensitive to variability due to system components.

3. Design processes so the manufactured product is as close as possible to desired

target specifications.

4. Determine operating conditions for process so critical process characteristics are

close to desired target values and variability around this target is minimized.

An RPD problem only exists if there is at least one interaction between a control

and noise factor. If a control by noise factor interaction does not exist, the variance

will be constant across the entire range of control variables. In this situation, classical
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approaches to optimizing a process response can be applied without regard to noise.

If a control by noise interaction does exist, then there is a control setting that will

minimize the variance across the range of noise variables. When a control by noise

interaction exists creating an RPD problem, control factors can be classified into

three categories: location factors where control factors effect the process mean as

they are varied across their range, dispersion factors if a control factor effects the

process variance and a combination where a control factor impacts both the mean

and variance of the process [63].

1.3.4 Taguchi’s Method - Crossed Array Designs.

Taguchi’s method is centered on orthogonal designs. Montgomery [59] defines an

orthogonal design as one in which the columns of the design matrix, X, are orthogonal

meaning that their inner product sums to zero. Orthogonal designs are useful in

designed experiments because they allow the experimenter to examine individual

effects of each factor in the design matrix. As the number of experimental runs

increases in the X matrix, the potential number of factors, interactions and higher

order effects available to be estimated also increases. Taguchi’s crossed array used

orthogonal arrays of the control variables, called the inner array, and crossed them

with orthogonal arrays of the noise factors, known as the outer array.

Taguchi summarized the output from his design using two summary statistics, the

mean response and signal-to-noise ratio (SNR). Taguchi’s SNR was defined based on

the goal of the experiment. If the experimenter wanted to minimize the response,

smaller is better (SNRs), then the following SNR should be utilized

SNRs = −10 log
n∑
i=1

y2
i

n
(1.5)

where n is the number of outer array replications of the response, yi, to be summed.
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If the experimenter wished to maximize the response meaning a larger response is

better (SNR`), the SNR was changed by calculating the squared reciprocal of the

response as shown in the following formula.

SNR` = −10 log
n∑
i=1

1/y2
i

n
(1.6)

If there is a specific target value desired (SNRT1), the following formula can be applied

SNRT1 = −10 log s2 (1.7)

where s2 is the variance of the outer array replications of the response, yi, from the

target defined as s2 =
∑n

i=1 (yi − ȳ)2 / (n− 1) [63]. This target SNR can be further

defined (SNRT2) in cases where the response standard deviation is related to the

mean as

SNRT2 = −10 log

(
ȳ2

s2

)
(1.8)

In all SNR cases, the SNR value is maximized. Thus, analysis consists of calcu-

lating the mean response and SNR for factors at different settings and identifying

which settings optimize the response while minimizing variance. SNRT2 is the only

true SNR as it is dimensionless.

Taguchi’s arrays only consider main effects and first-order interactions. If there

are higher order terms required in the model, Taguchi’s method will misspecify the

model. Finally, none of the SNRs are able to separate effects strictly due to the

mean or the variance as multiple control factor settings could produce the same SNR.

Therefore, it is often considered more appropriate to model the variance and mean

model separately as is shown in the next Section [63].
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1.3.5 Response Surface Model Method - Combined Array Designs.

The combined array or response surface model (RSM) approach applies more em-

phasis to learning the characteristics of the true process rather than the optimization

of a criterion. RSM methods focus on the roles of control variables on mean and

variance in order to provide an estimate of the mean and variance at any location of

interest defined in the control variables. Typically, second-order models are developed

when using RSM approaches and higher order interactions and terms are ignored due

to the sparcity of effects principle. Further, noise terms, z, are assumed to be inde-

pendent (cov(zi, zj) = 0 ∀ i 6= j) implying no noise by noise interaction terms are

significant. A general matrix form of the quadratic response surface model is in the

following Equation [22]:

y = G (x, z) = β0 + x′β + x′Bx+ z′γ + x′∆z + ε (1.9)

where x is an rx×1 vector of control variables, z is an rz×1 vector of noise variables,

β0 is the intercept, β is an rx × 1 vector of control variable coefficients, B is an

rx × rx matrix of the quadratic control coefficients, γ is an rz × 1 vector of noise

variable coefficients, ∆ is an rx× rz matrix of control by noise interaction coefficients

and ε is a random error assumed to be normally distributed, N(0, σ2Irz); rx and rz

represent the number of control and noise factors respectively. The noise variables,

z = (z1, z2, . . . , zrz), are assumed to be a vector of independent random variables with

E(zi) = 0 ∀ i and var(z) = σ2
zIrz which is easily accomplished by centering and

scaling. Thus the general form of the mean model only includes the control variables

and is shown in Montgomery [59] to be

E(y|x) = Ez,ε (G(x, ·)|x) = β0 + x′β + x′Bx. (1.10)
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where E(y|x) is short-hand notation for Ez,ε (G(x, ·)|x) which will be used throughout

the remainder of this Section. Likewise, the variance model can be found by treating

z as a random variable and applying the variance operator to Equation (1.9). The

variance model becomes

var(y|x) = varz,ε (G(x, ·)|x) = σ2
z (γ + ∆′x)

′
(γ + ∆′x) + σ2 (1.11)

where σ2 is the variance of ε, typically estimated as the Mean Square Error found

from performing a regression on the design, σ2
z is the variance-covariance matrix of z

typically assumed to be the identity matrix and var(y|x) represents varz,ε (G(x, ·)|x)

and will be used throughout the remainder of this Section [63].

1.3.6 Dual Response Surface Optimization.

Often, robust control settings are chosen by solving an optimization problem that

achieves a target mean while minimizing the variance. One optimization approach

suggested by Myers and Montgomery [63] is

min
x∈D

var (y|x)

s.t. E (y|x) = T (1.12)

where T is a target value for the mean and the control parameters are confined to the

experimental design region, D, which is a closed and bounded compact set. Before

continuing, let the mean model be estimated by

µ̂y = Ê (y|x) (1.13)
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and the variance model by

σ̂y = v̂ar (y|x) . (1.14)

Myers and Montgomery [63] suggest the use of overlays of contour plots for the

mean and variance surfaces to select optimal control settings. This method has merits

by allowing a visual assessment of the tradeoffs between the mean and variance for a

given algorithm but is limited to two control variables.

Myers and Carter [62] and Vining and Myers [88] applied Lagrangian multipliers in

an attempt to combine the mean and variance models into a single objective function.

The authors included an additional constraint limiting the optimal control factors to

a spherical region with x′x = ρ2 where ρ is the radius of the spherical region. The

Lagrangian function is described as

L = σ̂y − λθ(µ̂y − T )− λp(x′x− ρ2) (1.15)

where λθ is the weighting applied to the difference between the mean and its target

value and λp is the weighting applied to the spherical region constraint [53].

Del Castillo and Montgomery [23] implemented the generalized reduced gradi-

ent (GRG) algorithm to solve the Lagrangian function in Equation 1.15. The GRG

allowed inequality constraints yielding local optima. The equality constraints imple-

mented in Equation (1.15) were not always guaranteed to produce local optima.

Lin and Tu [51] developed a method to identify robust settings using the response

surface methodology. This method simultaneously reduced the variance while improv-

ing the mean response value by considering a target mean. Three different measures

for mean squared error (MSE) were suggested depending on the response value; in all

cases, the MSE is minimized. When a smaller response is desired (MSEs), the Lin
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and Tu criterion becomes

MSEs = µ̂2
y + σ̂2

y. (1.16)

Similarly, when a larger response of interest is desired (MSE`), the criterion is

MSE` = −(µ̂2
y) + σ̂2

y. (1.17)

Finally, when a desired target mean, T , is specified (MSET ), the criterion becomes

MSET = (µ̂y − T )2 + σ̂2
y. (1.18)

Shaibu and Cho [73] extended the Lin and Tu MSE approach to include a target

standard deviation in the equations. As in the Lin and Tu method, three methods are

proposed based on the desired response value. The authors included a constraint for

an upper bound on variance, S. If a smaller response is desired (MSEs), the Shaibu

and Cho proposed criterion is

MSEs = µ̂y + (σ̂y − TS)2 (1.19)

where TS is the user-specified target standard deviation. When a larger response is

desired (MSE`), the criterion becomes

MSE` = −
[
µ̂y + (σ̂y − TS)2

]
. (1.20)

Finally, the Shaibu and Cho criterion when a target mean, T , is specified (MSET )

becomes

MSET = (µ̂y − T )2 + (σ̂y − TS)2. (1.21)

Copeland and Nelson [19] restricted the distance between the observed mean re-
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sponse value and the target value. When a target mean value is desired, the authors

suggest minimizing an objective function specified as σ̂y + ε by

ε =

 (µ̂y − T )2 if (µ̂y − T )2 > ∆2

0 if (µ̂y − T )2 ≤ ∆2
(1.22)

where ∆2 is a user-specified bound on the difference between the observed mean and

the mean target value.

Tang and Xu[85] applied goal programming to the dual response problem. The

Tang and Xu dual response problem is

min
x

δ2
µ + δ2

σ (1.23)

s.t. µ̂y − wµδµ = T

σ̂y − wσδσ = TS

x′x ≤ ρ or xl ≤ x ≤ xu

where the δ terms in the objective function are unrestricted scalar variables repre-

senting slackness and the w terms are user-specified weights [53].

Several other applications for solving the dual response surface optimization prob-

lem have been proposed. Kim and Lin [40] presented fuzzy optimization methods.

Pareto optimal solutions were discussed by Koksoy and Dogamaksoy [42] and Lam

and Tang [45]. Table 1.1 summarizes most of the dual surface optimization methods

described in this literature review. The research presented in this dissertation focused

on the Lin and Tu approach to dual response optimization although other methods

were considered.

19



T
a
b

le
1
.1

.
M

e
th

o
d

s
fo

r
so

lv
in

g
R

P
D

d
u

a
l

re
sp

o
n

se
p

ro
b

le
m

.

R
e
fe

re
n

ce
T

a
rg

e
t

is
b

e
st

S
m

a
ll

e
r

th
e

b
e
tt

e
r

L
a
rg

e
r

th
e

b
e
tt

e
r

M
ye

rs
&

m
in
x
σ̂
y

M
on

tg
om

er
y

(2
00

2)
s.
t.

µ̂
y

=
T

V
in

in
g

&
M

ye
rs

(1
99

0)
m

in
x
σ̂
y

m
in
x
µ̂
y

m
ax

x
µ̂
y

s.
t.

µ̂
y

=
T

s.
t.

σ̂
y

=
T
S

s.
t.

σ̂
y

=
T
S

x
′ x

=
ρ

x
′ x

=
ρ

x
′ x

=
ρ

D
el

C
as

ti
ll

o
&

m
in
x
σ̂
y

m
in
x
µ̂
y

m
ax

x
µ̂
y

M
on

tg
om

er
y

(1
99

3)
s.
t.

µ̂
y

=
T

s.
t.

σ̂
y

=
T
S

s.
t.

σ̂
y

=
T
S

x
′ x
≤
ρ

x
′ x
≤
ρ

x
′ x
≤
ρ

L
in

&
T

u
(1

99
5)

m
in
x

(µ̂
y
−
T

)2
+
σ̂
2 y

m
in
x
µ̂
2 y

+
σ̂
2 y

m
in
x
−
µ̂
2 y

+
σ̂
2 y

C
op

el
an

d
&

N
el

so
n

m
in
x

(µ̂
y
−
T

)2
+
σ̂
2 y

m
in
x
µ̂
2 y

+
σ̂
2 y

m
in
x
−
µ̂
2 y

+
σ̂
2 y

(1
99

6)
s.

t.
(µ̂

y
−
T

)2
≤

∆
2

s.
t.

(µ̂
y
−
T

)2
≤

∆
2

s.
t.

(µ̂
y
−
T

)2
≤

∆
2

S
h

ai
b

u
&

C
h

o
(2

00
9)

m
in
x

( µ̂
y
−
T

)2
+

(σ̂
y
−
T
S
)2

m
in
x
µ̂

+
(σ̂

y
−
T
S
)2

m
in
x
−
[ µ̂ y+

(σ̂
y
−
T
S
)2
]

s.
t.
σ̂
y
≤
S

s.
t.
σ̂
y
≤
S

s.
t.
σ̂
y
≤
S

T
an

g
&

X
u

(2
00

2)
m

in
x

δ2 µ
+
δ2 σ

s.
t.

µ̂
y
−
w
µ
δ µ

=
T

σ̂
2 y
−
w
σ
δ σ

=
T
S

x
′ x
≤
ρ

or
x
l
≤
x
≤
x
u

20



1.4 Original Contributions and Research Overview

This research makes original contributions in both statistics and HSI. Relative to

HSI, specific image noise characteristics are defined to uniquely describe hyperspectral

images. A small sample data splitting algorithm is developed to create representative

training and test sets essential for algorithm performance estimation. In statistics,

the RPD model is extended to include higher order noise terms. Table 1.2 maps the

chapters of this dissertation to the particular RPD area of study.

Table 1.2. Chapter description.

Chapter Image characteristics Data splitting RPD extensions
2 x x
3 x

Chapter 2 presents a novel data splitting method utilizing discrete and continuous

image characteristics as representations of the noise present in HSI. Specifically, the

number of clusters, Fisher ratio and percent of target pixels are used to character-

ize HSI. The chapter also develops the small sample training and test set selection

(SSTATS) method to identify training and test sets for use in RPD of HSI. The train-

ing and test sets provide excellent separation of observed noise characteristics. The

SSTATS method is compared with the CADEX and DUPLEX algorithms proposed

by Kennard [39, 79] as well as random selection approaches to data splitting. Re-

sults from simulations as well as an application using the RX algorithm display the

superiority of the SSTATS algorithm.

Chapter 3 expands the traditional RPD model to include noise by noise interac-

tions and squared noise terms. These coefficients are typically assumed to be negligi-

ble, but were significant in an RPD of the anomaly detection algorithm, AutoGAD.

The RPD mean and variance models are extended to include the higher order noise

terms. The Lin and Tu MSE approach [51] to solving the RPD problem is utilized to
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select robust control settings. The mean and variance models including higher order

noise coefficients can be applied to any dual response surface optimization technique

listed in Table 1.1.
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II. Small Sample Training and Test Selection Method for

Optimized Anomaly Detection Algorithms in Hyperspectral

Imagery

2.1 Introduction

There are typically two broad classes of unsupervised anomaly detectors consid-

ered in the literature depending on the background estimate. Local models define the

background based on a local neighborhood around a test pixel while global models

typically specify a background distribution from across the entire image, or a large

section of the image [81]. A brief list of anomaly detection algorithms proposed for

hyperspectral imagery (HSI) include the support vector data description algorithm

(SVDD) [7], the Reed-Xiaoli (RX) [67] algorithm, the locally adaptive iterative RX

detector [84] and the autonomous global anomaly detector (AutoGAD) [37]. Most, if

not all, anomaly detection algorithms require a user to identify some initial parame-

ters. These parameters (or controls) affect the overall algorithm performance.

Anomaly detectors are relatively simple to implement as they require no a priori

signature information. These algorithms are intended for images with sparse anoma-

lies. Regardless of the anomaly detector being utilized, algorithm performance is

often negatively impacted by uncontrollable noise factors which introduce additional

variance into the process. A generic anomaly detector is depicted in Figure 2.1. A

vector of control variables are input into the anomaly detector (classifier) producing

a response, y. A vector of uncontrollable noise variables also affect the classifier out-

put. The noise variables are considered uncontrollable in real-world applications, but

can be fixed for a designed experiment. In the case of HSI, the noise variables are

embedded in the image under consideration. For instance, two images of the same

scene taken at different times of day will have different sun angle effects introducing
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variability into the spectral data collected [47]. Thus, the need arises to identify ro-

bust anomaly detector settings capable of yielding consistent responses across varied

image backgrounds. Landgrebe [48] summarized this concept for future hyperspectral

algorithms:

...what is needed is an analysis process that is robust in the sense that it
would work effectively for data of a wide variety of scenes and conditions,
and can be used effectively by users rather than only by producers of the
technology. The algorithms do not need to be simple, but they must be
simple to apply and robust against user problems [48, pg. 419].

Consider the performance of an anomaly detector, y, represented as a function of

control and noise variables with some random process noise in Equation (2.1). Figure

2.1 depicts this process. As a result, HSI anomaly detection fits directly into the

robust parameter design (RPD) framework.

y = F (x, z) + ε (2.1)

Taguchi developed RPD as a means to identify optimal algorithm parameters by

targeting a specified process mean while minimizing process variance. Taguchi’s RPD

method utilizes orthogonal designs by crossing an orthogonal array of control variables

with an orthogonal array of noise variables. Some authors have voiced concern with

aspects of Taguchi’s work; one proposed correction led to a combined array approach

in Myers [63] which will be described here [64, 69].

Training and test sets of hyperspectral images are typically selected randomly to

assess algorithm performance. Davis [22] considered each training image as a categor-

ical noise variable in his RPD for HSI anomaly detection. This requires RPD selected

optimal settings based on each training image. For anomaly detection applications,

it would take considerable planning to adjust anomaly detector control settings based
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Figure 2.1. Nominal anomaly detector.

on each incoming image to be processed. Mindrup et al. [57] developed a framework

of continuous and discrete noise characteristics to describe images based on three

measurable noise characteristics: the Fisher score, the ratio of target pixels and the

number of clusters. These are not the only characteristics observable within an image,

but rather a subset that are easily calculated within a training set with truth infor-

mation. Thus, a crossed array of control variables with observed noise characteristics

was possible. This crossed design array was used in RPD to identify robust control

settings. Unfortunately, the selected image noise features were a result of observa-

tional data and are considered “messy” [39] as the images do not typically separate

into an orthogonal training and test set. Mindrup et al. [57] proposed a greedy

heuristic to select a training set covering the largest range in each noise variable. The

heuristic yielded multiple optimal training sets in most cases. Kennard and Stone

[39] developed the CADEX algorithm to assist developing experimental designs for

response surface exploration. This algorithm primarily focuses on performing “rea-

sonable smoothing of the results and to have plans as model-free as possible” [39].

The algorithm focuses on developing a robust training set which often yields training

and test sets that are not representative of one another. Kennard improved upon

his initial approach with the DUPLEX algorithm which “provides a more stringent

method of model validation because some extreme points appear in both the esti-

mation and prediction sets” [79]. Snee suggests data splitting only when the total
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number of points available for the training and test set (N) is greater than twice the

number of parameters being estimated (p), or more specifically, N ≥ 2p + 25. In

the case of HSI, sometimes the number of images available for training and testing

algorithms falls well below this benchmark. This section proposes a training and test

selection strategy intended for small data sets where N ≤ 30. While splitting small

sample sizes yields estimated coefficients with larger variance than those obtained by

fitting the entire data set [79], data splitting is necessitated by the nature of the HSI

problem under consideration. In general, this chapter seeks to find training and test

sets that are as similar as possible in order to avoid bias when assessing the different

algorithms.

The work in this chapter extends the work found in Mindrup et al. [57] and Min-

drup et al. [58]. The chapter develops the small sample training and test selection

(SSTATS) method for selecting unique optimal training and test subsets of hyper-

spectral images yielding consistent RPD results across both subsets. SSTATS is based

on measures such as the D-optimal score and distance norms. These subsets are not

necessarily orthogonal since they are formed using observational data, but still pro-

vide improvements over random training and test subset assignments by maximizing

the volume and average distance between image characteristics. Further, the SSTATS

training and test sets are more “representative” of one another when compared with

subsets generated using the CADEX and DUPLEX algorithms on datasets with small

sample sizes. Representative training and test sets are necessary as models are often

used on data collected outside of the bounds specified by the training set.

The remainder of this chapter is organized as follows. First, robust parameter

design concepts are reviewed. Then the CADEX and DUPLEX training and test

selection methods and previously published HSI noise variable creation methods are

reviewed. Next, the SSTATS training and test selection strategy is developed. A
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simulation experiment for non-orthogonal noise variables reveals the utility of optimal

training and test sets as compared with randomly selected training and test sets.

Following the simulation, all of the training and test selection methods are compared

in a real-world example by using RPD and the selected training and testing sets to

select robust control parameters for the RX anomaly detection algorithm.

2.2 RPD Background

Regression models are typically vague with respect to what transformations are

required of the factors, the existence of asymptotes and the fact that most experiments

contain multiple responses [39]. RPD methods attempt to identify robust process

control settings capable of consistent performance by incorporating the mean and

variance into a single response variable, even in the face of uncontrollable or noise

factors. It is assumed that noise factors are uncontrollable in practice, but can be

controlled for designed RPD experiments [63]. Further, it is assumed that the overall

true process response, y, can be described as a function of control variables, x, and

noise variables, z

y = G(x, z). (2.2)

Lin and Tu [51] proposed a criterion considering the process mean and variance

as an estimate for mean square error (MSE) to solve for optimal control variable

settings in RPD problems. The Lin-Tu (LT) MSE minimization criterion considers

the process mean based on a target value, T, and process variance both conditioned

with respect to x, as shown below.

LTz,ε (G(x, ·)|x) = {Ez,ε (G(x, ·)|x)− T}2 + varz,ε (G(x, ·)|x) (2.3)

The vector of optimal control variable settings, x∗, can be identified by solving
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the following constrained optimization problem

x∗ = arg min
x∈D

LTz,ε (G(x, ·)|x) (2.4)

where the vector of control variables, x, is constrained to the experimental design

space, D, which is a closed and bounded compact set.

Typically, second-order models are developed in response surface methodology

approaches to RPD and higher order control interactions are ignored due to the

sparsity of effects principle [63]. Noise by noise interactions and squared noise terms

are also assumed to be negligible. A general matrix form of the quadratic response

surface model proposed by Myers [63] is

y = G(x, z) = β0 + x′β + x′Bx+ z′γ + x′∆z + ε (2.5)

where x is an rx×1 vector of control variables, z is an rz×1 vector of noise variables,

β0 is the intercept, β is an rx × 1 vector of control variable coefficients, B is an

rx × rx matrix of the quadratic control coefficients, γ is an rz × 1 vector of noise

variable coefficients, ∆ is an rx× rz matrix of control by noise interaction coefficients

and ε is a random error assumed to be normally distributed N(0, σ2Irz); rx and rz

represent the number of control and noise factors respectively. The noise variables,

z = (z1, z2, . . . , zrz), are assumed to be a vector of independent random variables with

E(zi) = 0 ∀ i and var(z) = σ2
zIrz which is easily accomplished by centering and

scaling. The mean model with respect to z for the estimated quadratic model in

Equation (2.5) becomes

E(y|x) = Ez,ε (G(x, ·)|x) = β0 + x′β + x′Bx. (2.6)
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where E(y|x) is short-hand notation for Ez,ε (G(x, ·)|x) and will be used throughout

the remainder of this Chapter.

Similarly, the variance model of Equation (2.5) is given by

var(y|x) = varz,ε (G(x, ·)|x)

= (γ′ + x′∆) varz(z) (γ′ + x′∆)
′
+ σ2

= σ2
z (γ′ + x′∆) (γ′ + x′∆)

′
+ σ2. (2.7)

The corresponding LT criterion becomes

LT (y|x) = LTz,ε (G(x, ·)|x)

= (β0 + x′β + x′Bx− T )
2

+ σz
2 (γ′ + x′∆) (γ′ + x′∆)

′
+ σ2. (2.8)

For the remainder of this section, the notation LT (y|x) will be used to represent

LTz,ε (G(x, ·)|x).

The noise parameters, z, effect the overall LT criterion in the variance model

through the noise parameter coefficients, γ and ∆, but the criterion is completely

in terms of control parameters, x. Thus, optimal control settings can be identified

through constrained optimization as in Equation (2.4).

2.3 Training and Test Set Selection

The general training set selection problem is exemplified by considering the images

represented by noise variables in Figure 2.2. Common practice assumes orthogonal

noise features such as a replicate of the 22 factorial design represented by circles in

Figure 2.2. Typically, this is possible in industrial applications by identifying high and

low noise settings that can be fixed in a test environment. HSI noise characteristics
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cannot be fixed in the same manner. When considering a finite number of images,

the noise within a set of hyperspectral images tends to look more like the observed

points depicted as triangles in Figure 2.2. It is not readily apparent how to select a

representative training and test set from the observed points. Randomly separating

the data would not necessarily guarantee that “some of the points in the [training]

set are extrapolation points, and the [test] set would provide no information on how

well the model is likely to extrapolate” [60, pg. 311]. In general, the training set

is used to parameterize an RPD model and the test set provides an opportunity to

assess how well the model predicts performance. In what follows, three procedures

are presented as candidates for selecting training and test sets.

Figure 2.2. Generic training set selection problem.

Identifying a robust training and test set of images can be considered a combina-

torial optimization problem. Formally, a combinatorial optimization problem aims to

select an object from a finite or countably infinite set. In terms of selecting training
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sets of hyperspectral images, the combinatorial optimization problem is comprised of

a pair (Ω, f), where Ω consists of all possible combinations of images and f is the

cost function used to select the optimal combination [65]. Below, various strategies

of searching Ω are presented.

In the remainder of this section, the CADEX and DUPLEX algorithms are re-

viewed. Then HSI noise characteristics are defined and some notation is presented

providing an avenue to separate images into training and test sets. Finally, the pro-

posed small sample training and test selection (SSTATS) method is developed.

2.3.1 CADEX.

In what follows, the CADEX algorithm is described following the description

by Kennard and Stone [39]. First, let p represent the number of control factors

(x1, x2, . . . , xp). Further, there are n ≤ N distinct points to be chosen for the exper-

imental design from the total possible candidate design points, N , contained in the

p−dimensional design space spanned by the factors. The N candidate design points

can be represented in a matrix X as

X =



x11 x21 . . . xp1

x12 x22 . . . xp2
...

...
...

...

x1v x2v . . . xpv
...

...
...

...

x1N x2N . . . xpN


.

Prior to calculating any distance metric used to select training and test sets, the

data is standardized and orthonormalized to reduce overall sensitivity due to factor

ranges and orientation. A standardization step is applied to the elements of the
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candidate design matrix, X where

xiv = (Xiv −Xi·) /
[∑

(Xiv −Xi·)
2
]1/2

(2.9)

where Xi· =
∑
v

Xiv/N

and Xiv are the raw coordinate values from the candidate matrix.

Next, the data is orthonormalized. The candidate design matrix is decomposed

using a Choleski variant of Gaussian elimination by

X ′X → T ′T (2.10)

where T is upper triangular and X is assumed to be of rank p. Finally, the candidate

design is transformed by

W = XT−1 (2.11)

with W ′W = Ip where Ip is a square p× p identity matrix. The experimental design

is sequentially selected from the elements of the orthonormal candidate matrix with

candidate points, W = w1, w2, . . . , wN . Let Q = q1, q2, . . . , qn and R = r1, r2, . . . , rn

represent the training and test sets respectively. Therefore, Q∪R ⊆ W and Q∩R = ∅.

In the absence of a set of starting points, the first two points included in the training

set are selected by calculating

{u∗, v∗} = max
v<u
‖wv − wu‖2

=

p∑
k=1

(wkv − wku)2 (2.12)

which identifies the two most separated points as the first included in the training

set, Q = {wu∗ , wv∗}. The points are then removed from the list of candidate points,
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W = W\{wu∗ , wv∗} where elements to the right of \ are removed from the set W . In

the rare case that there is not a unique solution to Equation (2.12), ties are broken

based on the pair with the smallest index, v. Next, training set points are sequentially

selected by defining the squared distance from point v to point u as

D2
vu = ‖wv − wu‖2 (2.13)

Letting Q = q1, q2, . . . , qi, . . . , qk for k < n represent the k points already included

in the training set, the k + 1st design point is chosen as follows. Let

∆2
v(k) = min

i∈Q
{D2

1v, D
2
2v, . . . , D

2
kv} (2.14)

for v ∈ W be the squared distance from the point v (not yet in the design) to

the nearest design point already included. Selection of the k + 1st design point is

performed by choosing the point remaining in the (N − k) candidate points which is

farthest from an existing design point using the criterion

∆2
k+1 = max

v 6∈Q
{∆2

v(k)}. (2.15)

Assuming n was chosen as n = 1
2
N , once n points were included in the training set,

the remainder of the points are placed in the test set.

2.3.2 DUPLEX.

While the CADEX algorithm focuses strictly on the training set, the DUPLEX

algorithm attempts to create training and test sets covering similar areas of the factor

space and having similar statistical properties. As in the CADEX algorithm, can-

didate points are first standardized and orthonormalized as in equations (2.9)-(2.11)

33



producing W . The Euclidean distance between all possible pairs of points (u, v) is

calculated using Equation (2.13). The distance between all pairs (u, v) need only be

calculated once.

To begin the algorithm, the points {v∗, u∗} satisfying Equation (2.12) are again

included in the training set, Q = {wu∗ , wv∗} thus placing the two most separated

points in the training set; the points are again removed from the candidate list,

W = W\{wu∗ , wv∗}. Equation (2.12) is once again solved for the remaining candidate

points in W and the next most separated points, {u∗, v∗}, are placed in the test set,

R = {wu∗ , wv∗} while the candidate points {v∗, u∗} are once again removed from

the candidate list, W = W\{wu∗ , wv∗}. The remainder of the candidate points are

placed in alternating fashion in the training and test sets based on their distance from

points already in the specified set. Let s be the current algorithm iteration which

is at s = 3 after initializing the training and test sets. Then when s is odd, letting

q1, q2, . . . , qi, . . . , qk for k < n represent the k points already included in the training

set, the k + 1st training set design point is chosen as follows. First, the minimum

distance from a point not in either the training or test set to the nearest training set

point is defined as

∆2
v(k) = min

i∈Q
{D2

1v, D
2
2v, . . . , D

2
kv} (2.16)

for v ∈ W . The k + 1st training set point is then selected from the N − k candidate

points by using the criterion

∆2
k+1 = max

v 6∈Q,v 6∈R
{∆2

v(k)}. (2.17)

The k+1st point is then removed from the candidate list, W = W\wk+1. Similarly,

when s is even, letting r1, r2, . . . , rj, . . . , rg for g < n represent the g points already

included in the test set, the g + 1st test set design point is chosen as follows. First,
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let

∆2
u(g) = min

j∈R
{D2

1u, D
2
2u, . . . , D

2
gu} (2.18)

represent the candidate point closest to a point in the test set, u, for u ∈ W . The

g + 1st test set point is then selected from the N − g candidate points by using the

criterion

∆2
g+1 = max

u6∈Q,u6∈R
{∆2

u(g)}. (2.19)

The g+1st point is then removed from the candidate list, W = W\wg+1. This process

is continued until all n ≤ N candidate points are added to either the training or test

set.

2.3.3 Characterizing Noise.

A hyperspectral image, often referred to as an image cube, consists of p spectral

bands of an m × n spatial pixel representation of a sensed area. Each pixel in the

spectral dimension represents an intensity of energy reflected back to the sensor.

There are several potential observable noise characteristics that are used to define

the noise present in a hyperspectral image. Mindrup et al. [57] focused on three: the

Fisher ratio, the ratio of target pixels and the number of clusters.

The Fisher ratio, z1, described by Duda et al. [25, 55] is a measure for the

discriminating power of a variable. The Fisher ratio for the ith individual image,

i = 1, 2, . . . , I where I is the total number of images under consideration, is defined

as the average Fishers ratio across each image band, k = 1, 2, . . . , K. Thus, the Fisher

ratio for image i is

zi1 =

∑K
k=1

((
µai,k−µbi,k

)2

σ2
ai,k

+σ2
bi,k

)
K

(2.20)

where µai,k and σ2
ai,k

are the mean and variance of the anomalous pixels, a, in band k
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of image i and µbi,k and σ2
bi,k

are the mean and variance of the background pixels, b,

in band k of image i, all defined from a truth mask.

The ratio of target pixels, z2, was calculated if there was a truth mask for each

image, i = 1, 2, . . . , I, by

zi2 =
vi
bi

(2.21)

where vi and bi represent the number of anomalous pixels and background pixels in

image i respectively.

The number of clusters represents the number of homogenous groups of pixels

within an image. The number of clusters, z3, was recorded for each image, i =

1, 2, . . . , I using X-means as developed by Pelleg and Moore [66].

Each noise feature vector was standardized by

ẑk =
zk − µzk

σzk
(2.22)

where µzk and σzk represent the mean and standard deviation of the kth noise vector,

zk. The three standardized noise feature vectors were combined in an I × q noise

matrix, Z = [ẑ1 ẑ2 ẑ3], with I total images and q = 3 noise variables.

2.3.4 SSTATS Method - Preliminaries.

For this research the number of images, I, are assumed even and split equally

between the training and test sets. For the cost functions described below, scores for

each set were added together yielding
(
I
I/2

)
/2 = n unique couplets of training and

test sets. Let (Sw,Sw) represent the wth couplet; here Sw is the training set and Sw is

the test set. Then the set of unique couplets is S =
(
(S1,S1), (S2,S2), . . . , (Sn,Sn)

)
.
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The training (tr) and test (te) set selection problem can be abstracted to be

(Str,Ste) =
(
Sw∗ ,Sw∗

)
= arg max

w
f
(
(Sw,Sw)

)
(2.23)

for an appropriate cost function, f .

The training set of images are used in RPD to approximate the true anomaly

detection function in Equation (2.5) by

Ĝ(x|z = ztr) = β̂0 + x′β̂ + x′B̂x+ z′γ̂ + x′∆̂z + ε (2.24)

where x are the anomaly detection algorithm settings and ztr are the noise features

collected from a set of training images, Str ⊂ S. The test images are used to assess the

efficacy of the fitted model as well as the representativeness of the selected training

set.

2.3.5 SSTATS Method.

Let ZSw and ZSw represent the standardized noise matrices for a given couplet

(Sw,Sw). The standardized noise matrices, ZSw and ZSw , were incorporated in an

objective function designed to separate the images relative to the noise space. Herein

an objective function is proposed to maximize the volume of both the training and

test sets while maintaining an acceptable separation between individual points within

both the training and test sets, respectively. The objective function is computed in

terms of two set separation distance measures. The first is the average Euclidean

distance from each training or test set point to its respective mean vector; the second

considers the average distance between points within the training and test sets. A

D-optimal score is used to compare the volumes of these sets and the set with the

larger volume is identified as the training set.
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Similar problems have been studied in the area of designed experiments. The

D-optimal criterion is used to select designs that minimize the generalized variance

and maximize the volume of the convex hull of X ′X, sometimes referred to as the in-

formation matrix where X is the experimental design matrix, thereby minimizing the

confidence region for the regression coefficients [78]. A D-optimal design maximizes

D =
|X ′X|
Kp

(2.25)

where K is the number of experimental design points, p is the number of parameters

in the model and |X ′X| is the determinant of the information matrix.

When considering training and test set combinations from a discrete number of

possible images, I, a D optimal score was calculated for both sets. The D optimal

criterion of the first set for any couplet w = 1, 2, . . . ,W is

DSw =
|ZSw ′ZSw |

Kp
. (2.26)

The D optimal criterion for the complement set in couplet w = 1, 2, . . . ,W was found

by replacing Sw in Equation (2.26) with Sw.

Another expression reflecting the spread of the noise variables is defined by the

average Euclidean distance from each training or test set point to its respective mean

vector. The average distance between each image in the first set, i ∈ Sw, and the

mean vector for all noise variables in the first set, mSw , for a couplet w = 1, 2, . . . ,W

is defined as

δSw =

∑
i∈Sw

(
(Z ′i −mSw)′ (Z ′i −mSw)

) 1
2

I/2
(2.27)

where Zi represents row i ∈ Sw of the noise matrix, Z. A similar expression was used

for images in the second set, i ∈ Sw.

As a final expression reflecting the spread of the noise variables, the average dis-
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tance between points within the two sets was considered. The average distance be-

tween points within both sets was calculated using the Euclidean distance. The

average separation distance in the first set for couplet w = 1, 2, . . . ,W is

dSw =

∑
i∈Sw

∑
j>i∈Sw

((
Z ′i − Z ′j

)′ (
Z ′i − Z ′j

)) 1
2(

I/2
2

) (2.28)

where the denominator represents the total number of pairs of images being considered

and Zi and Zj represent the noise values for images i and j found on rows j > i ∈ Sw

of the noise matrix, Z, respectively. A similar expression was used for images in the

second set, j > i ∈ Sw.

DSw , δSw and dSw and their complements were calculated for each possible unique

couplet of images, w = 1, 2, . . . ,W . Next, the scores were standardized using Equa-

tion (2.22) to give them all equal weighting. Finally, an objective function was defined

to characterize image noise based on these different standardized volume and separa-

tion differences. The objective function with respect to a specified couplet, (Sw, S̄w),

is:

f(Sw,Sw) =
d̂Sw + d̂Sw

1 + |d̂Sw − d̂Sw |
+

δ̂Sw + δ̂Sw
1 + |δ̂Sw − δ̂Sw |

. (2.29)

Based on Equation (2.23), the optimal couplet, (Sw∗ ,Sw∗), is

(
Sw∗ ,Sw∗

)
= arg max

w
f
(
Sw,Sw

)
. (2.30)

Within this optimal couplet, the set with the largest D-optimal criterion value was

selected as the optimal training set, tr∗. The remaining set was identified as the
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optimal test set, te∗.

 if DSw∗ > DSw∗ tr∗ = Sw∗ and te∗ = Sw∗

otherwise tr∗ = Sw∗ and te∗ = Sw∗
(2.31)

2.4 Simulation Experiment

In what follows, a simulation meta-experiment is described that compares the per-

formance of the data splitting algorithms: CADEX, DUPLEX, SSTATS and random

selection. The meta-experiment consists of a basic experiment (represented by Blocks

shaded gray in Figure 2.3) replicated m = 1000 times (represented by white Blocks

in Figure 2.3). Individual Blocks in Figure 2.3 are numbered and will be referenced

as such. A broad overview of the meta-experiment is described below. Then, a more

detailed description follows in Sections 2.4.1-2.4.5.

In the absence of a true anomaly detector function for generating responses, a sim-

ulated “truth” model, y = G(x, z)+ε, was created and optimal settings were identified

in Blocks 1 and 2 of Figure 2.3. Noise was generated to match the noise distribu-

tions observed from Hyperspectral Digital Imagery Collection Equipment (HYDICE)

sensor Forest Radiance I and Desert Radiance II collection events in Block 3. To

allow a graphical comparison of training and test sets, two control and two noise

factors were used in the experiment. “Optimal” training sets were selected using

SSTATS, CADEX and DUPLEX as well as randomly selected sets in Block 4 of Fig-

ure 2.3. Then, responses from the simulated truth model were generated for an RPD

of the control variables and training set noise in Block 5. Stepwise regression was

performed on the experimental design and response vector to identify estimates for

the RPD model coefficients yielding the RPD function, ŷ = Ĝ(x, z) + ε in Block 6.

In Block 7, RPD optimal control settings identified from the estimated model led

to approximated optimal control settings. Next, training and test set points were
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1. Randomly generate
truth model coefficients

β0, β, B, γ,∆⇒
(G(x, z) + ε)

2. Solve LT equa-
tion for truth model

x∗, LTtrue (x∗true)

3. Randomly gen-
erate image noise

Z

4. Solve for opti-
mal training set

tr∗t

5. Generate responses
y|x = X,
z = Ztr∗t

6. Perform regression
on
(
y|x = X, z = Ztr∗t

)
and

(
E = X × Ztr∗t

) β̂0, β̂, B̂, γ̂, ∆̂⇒(
Ĝ(x, z) + ε

)
7. Solve LT equa-

tion from (ŷ|x)

m = 1000
truth

models

3 optimal
sets + 1

random set

x∗t ,
LTtrue (x∗t ),
LTtr∗ (x∗t )

8. Solve for observed
training LT values

LT esttr∗ (x∗t )

9. Solve for ob-
served test LT values

LT estte∗ (x∗t )

10. Calculate errors

Et
Loc,

Et
F it,

Et
Rep

Figure 2.3. Simulation experiment and error estimation.
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used to assess the representativeness of the training set in Blocks 8 and 9 of Figure

2.3. Finally, errors associated with the location of the optimal settings, the fit of the

RPD model and the representativeness of the training and test sets were defined to

assess the selection strategy performances as well as the performance of the randomly

selected training set in Block 10.

2.4.1 Develop Truth Model/Identify Optimal Settings.

In Blocks 1 and 2 of the meta-experiment in Figure 2.3, a truth model was created

and optimal settings were identified. The truth model coefficients, β0, β, B, γ and ∆,

were initially taken from the fitted model in Myers et al. [63, pg. 567]. Standard

normal (N(0, 1)) random variates were added to each coefficient for a given iteration

producing variability from model to model. The true process model became y =

G(x, z) + ε, where ε ∼ N(0, σ2 = 2). There were m = 1000 different truth models

created to observe variability across different truth models. Once true parameters

were selected, the true optimal control variable settings, x∗, and optimal LT value,

LTtrue (x∗true) = LT (y|x = x∗), were identified using Equation (2.8).

2.4.2 Create Image Noise/Identify Optimal Training Sets.

Noise was generated in Block 3 of Figure 2.3 representing Fisher’s score and per-

cent targets based on fitted distributions of eight images from the HYDICE Desert

and Forest Radiance data sets. Each image was halved to double the total number

of images to 16. For the most part, noise characteristics for the upper and lower half

of an image were homogenous. Figure 2.4 shows the process for creating two image

halves with noise vectors from one HYDICE image.

The noise features from the HYDICE images are arrayed in Table 2.1. Following

the process depicted in Figure 2.4, each original image was halved (1 -upper half, 2

-lower half) and renamed with a new image identification.
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z11, z12, z13

z21, z22, z23

Figure 2.4. Image noise characterization.

Table 2.1. Observed image noise characteristics.

Original Image New Fishers Percent of Number of
Image Half Image ID Score (Z1) Targets (Z2) Clusters (z3)

1D Upper 1 1.780 0.004 3
1D Lower 2 1.627 0.003 3
1F Upper 3 0.433 0.039 6
1F Lower 4 0.315 0.022 10
2D Upper 5 0.096 0.025 3
2D Lower 6 0.176 0.029 3
2F Upper 7 0.963 0.008 8
2F Lower 8 0.931 0.009 7
3D Upper 9 0.169 0.003 3
3D Lower 10 1.430 0.003 3
3F Upper 11 0.265 0.005 5
3F Lower 12 0.215 0.008 5
4F Upper 13 0.083 0.005 7
4F Lower 14 0.078 0.006 8
4 Upper 15 1.409 0.016 7
4 Lower 16 2.638 0.028 4
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The HYDICE image noise was fit to standard probability distributions using the

ARENA input analyzer. The Fisher’s score was fit to a Beta distribution with α =

0.511 and β = 1.38 with an additive shift parameter of 2.9. The percent targets was

fit to an exponential distribution with a mean of 0.0123 [38]. These distributions were

used to create random image noise in the simulation study. There were 16 training

points generated for each truth model based on the random noise distributions, z.

This meant there were n =
(

16
8

)
/2 or 6435 total possible unique couplets of training

and test sets. The random noise data was standardized and the noise vectors were

combined to form Z = [ẑ1 ẑ2].

Next, in Block 4 of the meta-experiment in Figure 2.3, training sets were selected

using CADEX, DUPLEX and SSTATS as well as a randomly selected training set

yielding tr∗C , tr∗D, tr∗S and tr∗R respectively. The associated test sets were te∗C , te∗D, te∗S

and te∗R. The training and test subsets were used to perform RPD.

2.4.3 Perform RPD.

Once the training sets were selected, an experimental design for RPD, Et for

t = {C,D, S,R}, was developed. A 32 factorial design with one replicate was used in

the initial orthogonal design for the control variables, X. The orthogonal design, X,

was augmented with every row of training noise variables to create Et:

Et = X × Ztr∗ (2.32)

where × represents the Cartesian product. Initial responses were generated for each

basic experiment in Block 5 of Figure 2.3 by substituting values for each row of Et

into Equation (2.5) along with random process variance drawn from ε ∼ N(0, σ2 = 2)

yielding y|x = X, z = Ztr∗t . Figure 2.3 reflects a change in shade at Block 5 to denote

the beginning of the basic experiment.

Next, Block 6 of Figure 2.3 depicts stepwise regression performed on each vector
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of training set responses and the associated experimental design, y|x = X, z = Ztr∗t

and Et for t = {C,D, S,R} yielding β̂0t, β̂t, B̂t, γ̂t and ∆̂t. These parameter estimates

were used in Block 7 of Figure 2.3 to identify the estimated optimal control settings

based on the optimal training set, x∗t , using Equation (2.4). The LT score (Lin and

Tu “target is best” MSE with T = 5) in the truth surface evaluated at x = x∗t ,

LTtrue (x∗t ), was found by using the true parameters (β0, β, B, γ,∆ and σ2) in

LTtrue (x∗t ) = LT (y|x = x∗t )

=
(
β0 + x∗t

′β + x∗t
′Bx∗t − T

)2

+ σ2
z

(
γ′ + x∗t

′∆
) (
γ′ + x∗t

′∆
)′

+ σ2. (2.33)

This value was used to assess “fit” error (described in Section 2.4.5) by comparing

the optimal LT value, LTtrue (x∗true), with the estimated LT value in the true surface,

LTtrue (y|x∗t ). For a simple example, consider the linear truth model with a single

control and noise variable, Z ∼ N(0, 1), as specified below.

y = G(x, z) = 1.25 + 0.55x− 0.68xz − 0.2z (2.34)

Assuming the target mean value is 2.0, the true LT model becomes

LTtrue = (1.25 + 0.55x− 2)2 + (−0.2− 0.68x)2 + 1 (2.35)

The optimal control setting would be x∗true = 0.36 and the optimal LT value

becomes LTtrue (x∗true = 0.36) = 1.5. Further, let the fitted model from regression of

a training set be

ŷ = Ĝ(x, z) = 1.2 + 0.49x− 0.59xz − 0.22z. (2.36)

The estimated LT model is

LTtr∗ = (1.2 + 0.49x− 2)2 + (−0.22− 0.59x)2 + 1. (2.37)
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The estimated optimal control setting becomes x∗t = 0.45 with an estimated LT

value of LTtr∗ (x∗t = 0.45) = 1.57. The LT score in the truth surface evaluated at

x = x∗t becomes LTtrue (x∗t = 0.45) = 1.51.

2.4.4 Training and Test Image LT.

LT scores for training points, ztr = {0.75,−0.5}, and test points, zte = {0.25,−0.45},

were calculated to consider the representativeness of the training and test sets as

shown in Blocks 8 and 9 of Figure 2.3. As in practice, RPD optimal control settings

identified from training points would be applied to the test points to assess setting

adequacy. All test responses would then used to calculate an estimated LT score.

LT scores for test set t = {C,D, S,R} at the estimated optimal control settings,

LT estte (x∗t ), were found by calculating the mean, ȳte and variance, s2
te, across all test

responses and solving Equation (2.38) for a given target value, T .

LT estte (x∗t ) = {ȳte − T}2 + s2
te. (2.38)

In order to have a one-to-one comparison of the sets, the same process was applied

to the training points for the training set mean, ȳtr, and training set variance, s2
tr.

The LT score for training set, t, becomes

LT esttr (x∗t ) = {ȳtr − T}2 + s2
tr. (2.39)

Returning to the simple example problem with a single control and noise variable,

consider four new responses divided into training and test. The training image LT

score is

LT esttr (x∗t ) = (1.43− 2)2 + 0.2 = 0.52. (2.40)

Similarly, the test image LT score is

LT estte (x∗t ) = (1.55− 2)2 + 0.06 = 0.27. (2.41)
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2.4.5 Error Definitions.

In Block 10 of Figure 2.3, three errors were used to describe the performance for a

given training and test set. First, a measure was defined to compare the true location

of x∗ to the optimal control settings from the regression model, x∗t . The location

error for a given training set t = {C,D, S,R}, MSEt
Loc, is measured as the Euclidean

distance from the estimated optimal control settings to the true optimum:

Et
Loc = RMSEt

Loc = ((x∗ − x∗t )′(x∗ − x∗t ))
1/2
. (2.42)

Next, an error to describe the difference between the optimum LT score, LTtrue (x∗true),

and the regression model optimum LT score for a given training set, LTtrue (x∗t ), was

developed. This value represented the absolute fit error for the model created using

training set t = {C,D, S,R}:

Et
F it = ∆MSEt

F it = |LTtrue (x∗true)− LTtrue (x∗t )| . (2.43)

Finally, an error estimating the representativeness of the training and test sets

was defined comparing the absolute difference between LT esttr (x∗t ) and LT estte (x∗t )

Et
Rep = ∆MSEt

Rep =
∣∣LT esttr (x∗t )− LT estte (x∗t )

∣∣ . (2.44)

Returning to the one control factor, one noise variable example from Section 2.4.3,

the location error becomes

Et
Loc =

(
(0.36− 0.45)2

)1/2
= 0.09. (2.45)

The fit error is calculated as

Et
F it = |1.5− 1.51| = 0.01. (2.46)
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Finally, the representative error for the example is

Et
Rep = |0.52− 0.27| = 0.25. (2.47)

Table 2.2 summarizes the different example LT scores and the data they were com-

puted from.

Table 2.2. Example LT table.

Truth Train Test

x 0.36 0.45 0.45 0.45 0.45
z - 0.75 -0.5 0.25 -0.45
y - 1.12 1.75 1.37 1.73

ȳ - 1.80 0.70
s2 - 1.55 0.46

LTtrue (x∗) 1.5 - -
LTtrue (x∗t ) - 1.51 -
LTtr∗ (x∗t ) - 1.57 -
LT esttr∗ (x∗t ) - 1.59 -
LT estte∗ (x∗t ) - - 2.15

Figure 2.5 gives another illustration of the different LT values and errors described

to this point. In the figure, points 1 and 2 represent training and test LT values

observed at the estimated optimum point, LT esttr (x∗t ) and LT estte (x∗t ) respectively.

2.4.6 Simulation Results.

The meta-experiment in Figure 2.3 was performed 1000 times. Location, fit and

representative errors were calculated for all four training sets, t = C,D, S,R. This

allowed a comparison between the proposed methodology and response surfaces gen-

erated from the other training sets. Thus, the simulation could be considered a

Binomial experiment made up of 1000 independent identical Bernoulli trials. Each

independent Bernoulli trial would measure whether the training set selected by the

proposed cost function resulted in a smaller error than one from another training set.

For instance, when comparing SSTATS with a randomly selected training set, if the
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Figure 2.5. Summary figure of errors and associated points.
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location error from the SSTATS training set was less than the location error using

a random training set (ES
Loc < ER

Loc), then the trial was a success. The probability

of success, p̂ was the ratio of the number of successes out of 1000 independent trials

where p̂j = Pr
(
ES
j < Et′

j

)
, j ∈ {Loc, F it, Rep}, t′ = C,D,R. Thus, a confidence

interval for p could be formed comparing each training set type by error. Confidence

intervals with lower limits greater than p = 0.5 provide evidence that the training set

chosen by the SSTATS objective function yielded smaller errors than training sets

selected using one of the other training set selection methods.

Figure 2.6 gives 95% confidence intervals for the location error, fit error and repre-

sentative error probabilities, p̂, comparing SSTATS with a randomly selected training

set. The location, fit and representative errors had confidence intervals on p̂ that

did not include p = 0.5 implying a significant difference between the errors associ-

ated with a random training set and a SSTATS training set. This demonstrated the

benefit of choosing training and test sets of images with an adequate separation of

noise variables using SSTATS rather than randomly picking training and test sets of

images. This separation leads to more consistent results on test sets points compared

with a random training set.

Figure 2.7 gives 95% confidence intervals comparing SSTATS with training sets

selected using CADEX. The location, fit and representative errors had confidence

intervals on p̂ that did not include p = 0.5 implying a significant difference between

the errors associated with a CADEX training set and a SSTATS training set with

SSTATS outperforming CADEX.

Figure 2.8 gives 95% confidence intervals comparing SSTATS with training sets

selected using DUPLEX. The location and fit errors had confidence intervals on p̂ that

did not include p = 0.5 implying a significant difference between the errors associated

with a DUPLEX training set and a SSTATS training set. The representative errors
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Figure 2.6. SSTATS vs. random confidence intervals.

Figure 2.7. SSTATS vs. CADEX confidence intervals.
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were not statistically different from a SSTATS training set and a DUPLEX training

set. This was not surprising as both methods attempt to identify representative

training and test subsets. Overall, SSTATS outperformed DUPLEX in terms of

model fits showing the power of the proposed methodology.

Figure 2.8. SSTATS vs. DUPLEX confidence intervals.

Further evidence of improved performance using a training set selected using

SSTATS rather than DUPLEX was gleaned from the maximum difference in errors

between DUPLEX training sets and SSTATS training sets. The error differences were

calculated by ES
Rep−ED

Rep. Large negative values show increased errors from the DU-

PLEX set and were preferred while large positive values reflect larger magnitudes of

errors from SSTATS training sets. Histograms were used to further illuminate the dis-

tribution of error differences. Figure 2.9 displays the representative error histogram.

On the average, there was no significant difference in representative error between
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Figure 2.9. SSTATS vs. DUPLEX representative errors.

a DUPLEX and SSTATS training set. However, when there was a difference between

the two methods, SSTATS can yield far smaller errors. Therefore, while similar sets

are obtained, greater differences in training and test sets were observed from the

DUPLEX method further justifying the use of SSTATS.

Overall, the use of a training set selection algorithm reduced all three errors as

compared with a randomly selected training set. SSTATS prevailed as the best per-

forming algorithm as it provided more representative training and test sets in the sim-

ulations overall; SSTATS statistically outperformed randomly selected training sets

and sets created from the CADEX algorithm in all three types of errors. SSTATS also

outperformed the DUPLEX algorithm although there was no statistical difference in

representative error between the two methods. In the following Section, training and

test sets of images were selected in an RPD of the RX detector.
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2.5 RX Algorithm Experiment

Reed and Yu [67] developed the RX detector under the assumption that most

images display approximately independent and Gaussian characteristics from pixel

to pixel. Prior to implementing the RX detector, it is common practice to apply

principal components analysis (PCA) to reduce the number of spectra considered.

PCA projects the data into a subspace that produces uncorrelated components; the

components accounting for the greatest total variance are retained [24]. Next, the

RX detector creates a user-defined window around each test pixel considered, x. The

mean, µ, and covariance, Σ, of all pixels within the window (excluding x) are used to

perform a generalized maximum likelihood ratio test. An RX score is generated for

each pixel considered using the following formula:

RX (x) = (x− µ)T
[(

N

N + 1

)
Σ +

(
1

N + 1

)
(x− µ) (x− µ)T

]−1

(x− µ) (2.48)

This process is repeated by selecting a new test pixel and creating a new window to

define the background. RX scores are calculated for each test pixel. Since individual

pixels are assumed to be independent and Gaussian, these RX scores are compared

with χ2
α,ρ where α is the quantile and ρ is the degrees of freedom of the Chi-squared

distribution. The pixels are classified in the following manner.

x =

 outlier if RX(x) ≥ χ2
α,ρ

background otherwise
(2.49)

2.5.1 Inputs - Control Variables.

The RX detector has three controllable settings which will be varied in a designed

experiment to identify robust optimal operating settings. The control factors are

described below.
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1. Window size (A) – A2 defines the area of the window surrounding the test pixel

used to define the background mean and covariance (an odd number)

2. α (B) – the α parameter selected for the Chi-squared distribution

3. Number of principal components retained (C) – defines the number of principal

components kept after PCA

2.5.2 Images - Noise Variables.

Data used for this experiment came from the Hyperspectral Digital Imagery Col-

lection Equipment (HYDICE) sensor Forest Radiance I and Desert Radiance II col-

lection events. Spectral data was collected by the HYDICE sensor in 210 bands

encompassing the near-ultraviolet, visible, and infrared spectrums. Due to a small

sample size, ten images were halved and used to train and test the RX detector. These

image halves were defined by the Fisher ratio, percent targets and number of clusters

in the same fashion as Section 2.4.2. The image noise characteristics are broken out

with training sets by method in Table 2.3.

2.5.3 Outputs.

There were five potential testable outputs considered for the RX detector: process-

ing time, true positive fraction (TPF), false positive fraction (FPF), label accuracy

(LA) and total error (TE). True positive fraction compares the number of correctly

identified anomalous pixels with the total number of actual target pixels; false positive

fraction compares the total number of falsely labeled pixels (pixels labeled as anoma-

lies when they were actually background) with the total number of background pixels.

Label accuracy considers the number of correctly identified anomalous pixels as a per-

centage of the total number of pixels labeled as anomalous. Total error compares the

total number of misclassified pixels to the total number of pixels considered.
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Table 2.3. Image noise characteristics.

Image Half Fishers Percent Num SSTATS CAD DUP Rand
Score Targets Clusters

1D Upper 1.780 0.004 3 Train Train Train
1D Lower 1.627 0.003 3 Train Train
1F Upper 0.433 0.039 6 Train
1F Lower 0.315 0.022 10 Train Train Train Train
2D Upper 0.096 0.025 3 Train
2D Lower 0.176 0.029 3 Train Train
2F Upper 0.963 0.008 8 Train Train Train
2F Lower 0.931 0.009 7
3D Upper 0.169 0.003 3 Train Train Train
3D Lower 1.430 0.003 3 Train Train Train
3F Upper 0.265 0.005 5 Train Train
3F Lower 0.215 0.008 5 Train
4F Upper 0.083 0.005 7
4F Lower 0.078 0.006 8 Train Train Train
4 Upper 1.409 0.016 7 Train
4 Lower 2.638 0.028 4 Train Train Train
5 Upper 0.266 0.011 6 Train
5 Lower 1.845 0.005 6 Train Train
5F Upper 0.199 0.008 10 Train Train
5F Lower 0.741 0.009 7 Train Train Train
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Below, all five measures are assessed and reported but interest is centered on

maximizing the quotient, LA
TE

, due to the high FP rate common when applying the

RX detector. The ranges for each response are in Table 2.4.

Table 2.4. AutoGAD RPD response ranges.

Output Parameter Range
TPF [0, 1]
FPF [0, 1]
LA [0, 1]
TE [0, 1]
Time [0,∞]

While maximizing the objective function, LA
TE

, to identify robust settings, the

objective function is not the primary focus in assessing representative training and

test sets. Due to the very nature of the CADEX algorithm, it is expected that there

will be a large disparity between the average LA
TE

observed in the training and test sets.

DUPLEX and SSTATS are expected to display consistent algorithmic performance

across their respective training and test sets in terms of representative error. For an

example, consider the generic noise displayed in Figure 2.10. The CADEX algorithm

is expected to select the most extreme data points for the training set and leave the

remaining points for the test set. Whereas, the DUPLEX and SSTATS algorithms

are expected to create training and test sets that are more similar.

Figure 2.11 shows the training and test sets selected by the CADEX algorithm.

The four extreme points are included in the training set and the test set consists of

strictly interior points. Since the training set spans a larger volume of the design

space than the test set, it is expected that the training set average performance

will be influenced by the extremes not evident in the test set. As such, an average

performance on the test set larger than the training set would not be unexpected.

Therefore, it appears the CADEX algorithm will not provide representative sets.

Figure 2.12 gives the training and test sets identified by the DUPLEX algorithm.
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Figure 2.10. Example noise data.

Some extreme points lie in both the training and test sets. Representative error for

the DUPLEX algorithm should be smaller than for the CADEX algorithm since both

extreme and interior points are distributed roughly equally across both sets.

Finally, Figure 2.13 shows the training and test sets selected by the SSTATS

algorithm on the example noise set. SSTATS also includes a mix of interior and

extreme points in the training and test sets.

2.5.4 Experimental Design.

There is no variability when using specific settings for RX on a given image. Thus,

replications were not required in the experimental design. A full factorial design of

the control factors comprised a 5*3*10 run experiment. The ranges tested for each

control variable are listed in Table 2.5.

Before applying any regression methods, the control variables were all transformed
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Figure 2.11. CADEX training and test sets for example noise.

Table 2.5. RX RPD response ranges.

Input Parameter Type Test Range Factor Levels
Window size (A) Discrete [17, 25] 3
α (B) Continuous [1× 10−10, 1× 10−1] 10
Number of PCs retained (C) Discrete [8, 12] 5
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Figure 2.12. DUPLEX training and test sets for example noise.

to coded variables in [-1,1]. This step was performed using

xi,j =
ξi,j − [max(ξi,j) + min(ξi,j)]/2

[max(ξi,j)−min(ξi,j)]/2
(2.50)

where xi,j is exemplar i of the coded noise variable j and ξi,j is the original value [63].

2.5.5 Results.

The RPD coefficient estimates based upon all four training set selection techniques

and the response of interest, LA
TE

, are in Table 2.6. With the exception of some of

the coefficients found using a random training set, most coefficient estimates were

consistent across the four techniques.

The optimal control settings for the four models are given in Table 2.7. The ran-

dom model had markedly different settings than the other methods. Based on the

simulation experiment results in Figures 2.6-2.9, the SSTATS and DUPLEX models
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Table 2.6. RX RPD coefficient estimates.

SSTATS CADEX DUPLEX Random
β0 46.2 28.0 45.7 45.6
β1 2.4 4.7 3.3 4.8
β2 -15.8 -9.4 -15.5 -16.1
β3 -1.9 -1.2 -1.3 -2.5
γ1 -20.3 0 -9.7 -18.3
γ2 -13.8 -13.8 -14.3 -30.8
γ3 4.2 3.1 14.2 26.7
δ11 0 0 3.9 4.0
δ21 6.6 0 3.0 7.4
δ31 0 0 0 0
δ12 -2.4 -4.4 -3.6 -3.3
δ22 6.0 5.5 6.2 10.3
δ32 0 0 0 0
δ13 0 1.9 3.1 6.9
δ23 -2.3 -1.9 -5.5 -8.2
δ33 0 0 0 0
B11 -4.1 0 -4.8 -4.0
B12 0 -0.9 0 0
B13 0 0 0 0
B21 0 0 0 0
B22 0 0 0 0
B33 0 0 0 0

RMSE 47.6 33.8 48.3 46.1
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Figure 2.13. SSTATS training and test sets for example noise.

were expected to provide the most representative training and test sets (smallest rep-

resentative error, Et
Rep) with the SSTATS model providing the best overall fit for the

model (smallest location and fit errors, Et
Loc and Et

F it). In the RX application, the

SSTATS representative error was the smallest in comparison with the other models.

The random training set representative error was small, but its overall LT values for

the random training and test were far larger than any other method. An additional

estimate of the similarity between training and test sets can be computed by consid-

ering the ratio of the determinants of the X ′X matrices for both sets [79, pg. 421].

A ratio of
|X′trXtr|
|X′teXte| = 1 implies the two sets span equal volume in noise variable space.

The SSTATS algorithm yielded a ratio near one while the other algorithms had much

larger ratios. Table 2.7 arrays the model fits and LT values observed on the RX

algorithm.
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Table 2.7. RX results.

SSTATS DUPLEX CADEX Random

Window Size 23 21 25 17
α 1× 10−10 1× 10−10 1× 10−10 0.1
Number of PCs 8 8 9 8

Train LT 57041 62273 69461 89345
Test LT 56580 55210 39317 88502
Representative Error 461 7063 30144 843
|X ′trXtr|/|X ′teXte| 1.0087 3.3516 10.0288 6.2818

Individual comparisons of method performance broken out by training and test

sets are shown in Tables 2.8-2.11. In these tables, five responses are reported, the

emphasis here is on LA
TE

. Overall, the individual results closely matched the results

presented in Table 2.7. Table 2.8 gives the results from using the SSTATS method.

The SSTATS response of interest, LA
TE

, was consistent between the training and test

sets as shown by the representative error in Table 2.7. There was considerable vari-

ability from image to image as was expected.

Table 2.9 gives the individual image results from training with images selected

using the CADEX algorithm. The algorithm creates a very diverse training set leaving

the rest of the images in the test set. As expected, the training and test sets were

not representative of one another as is shown in Table 2.7.

Table 2.10 gives the individual image results from the DUPLEX algorithm. This

method was expected to compete closely with SSTATS in terms of representative

error as reflected in Table 2.7. However, the SSTATS algorithm was able to produce

somewhat more representative sets than the DUPLEX algorithm.

Table 2.11 shows the individual image results from the randomly selected training

set. The results emphasize the importance of using a training set selection strategy

rather than just using a random draw. The randomly selected set produced the worst

overall responses for LA
TE

averaging around 2.0 (the other methods averaged over 70).
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Table 2.8. SSTATS image results.

Image Image TPF FPF LA TE LA/TE
Half

Train

1D Upper 0.02 0.0013 0.07 0.01 13.35
1F Upper 0 0.0001 0 0.04 0
2D Upper 0.16 0.0002 0.95 0.02 45.21
2F Upper 0.18 0.0002 0.87 0.01 122.09
3D Lower 0.02 0.0015 0.26 0.03 7.71
3F Upper 0.24 0.0001 0.90 0.00 218.72
3F Lower 0.22 0.0005 0.67 0.00 174.62
4 Lower 0.00 0.0005 0.18 0.04 5.01
5 Upper 0.06 0.0003 0.67 0.01 62.78

5F Upper 0.11 0.0004 0.65 0.01 88.46
Train Avg 0.10 0.0005 0.52 0.02 73.80

Test

1D Lower 0.02 0.0013 0.05 0.01 10.32
1F Lower 0.02 0.0003 0.64 0.03 22.46
2D Lower 0.17 0.0002 0.96 0.02 42.84
2F Lower 0.24 0.0006 0.64 0.00 146.45
3D Upper 0.22 0.0022 0.26 0.00 53.74
4F Upper 0.24 0 1 0.00 286.47
4F Lower 0.25 0 1 0.01 148.89
4 Upper 0 0.0010 0 0.02 0
5 Lower 0.05 0.0004 0.56 0.01 49.26

5F Lower 0.06 0.0005 0.73 0.02 34.15
Test Avg 0.13 0.0007 0.58 0.01 79.46
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Table 2.9. CADEX image results.

Image Image TPF FPF LA TE LA/TE
Half

Train

1D Upper 0.04 0.0013 0.12 0.01 22.14
1F Upper 0 0.0002 0 0.04 0
1F Lower 0.02 0.0004 0.57 0.03 19.87
2D Upper 0.18 0.0002 0.96 0.02 46.55
3D Upper 0.27 0.0017 0.34 0.00 81.71
4 Upper 0 0.0010 0 0.02 0
4 Lower 0.00 0.0004 0.3 0.04 8.31
5 Lower 0.07 0.0003 0.7 0.01 63.49

5F Upper 0.16 0.0004 0.77 0.01 111.56
5F Lower 0.08 0.0005 0.78 0.02 37.04

Train Avg 0.08 0.0007 0.45 0.02 39.07

Test

1D Lower 0.02 0.0015 0.05 0.01 8.56
2D Lower 0.19 0.0002 0.96 0.02 44.44
2F Upper 0.27 0.0002 0.93 0.01 147.08
2F Lower 0.29 0.0006 0.70 0.00 171.73
3D Lower 0.02 0.0016 0.24 0.03 7.06
3F Upper 0.26 0.0001 0.91 0.00 227.96
3F Lower 0.23 0.0006 0.63 0.00 160.93
4F Upper 0.22 0.0001 0.89 0.00 237.66
4F Lower 0.25 0.0001 0.95 0.01 138.49
5 Upper 0.06 0.0003 0.68 0.01 64.27

Test Avg 0.18 0.0005 0.69 0.01 120.82
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Table 2.10. DUPLEX image results.

Image Image TPF FPF LA TE LA/TE
Half

Train

1D Upper 0.02 0.0015 0.05 0.01 8.04
1F Lower 0.02 0.0003 0.62 0.03 21.45
2D Lower 0.12 0.0004 0.89 0.02 37.33
2F Upper 0.16 0.0002 0.86 0.01 118.43
3D Upper 0.20 0.0022 0.23 0.00 46.18
3D Lower 0.01 0.0016 0.21 0.03 6.11
3F Lower 0.22 0.0005 0.67 0.00 174.62
4F Lower 0.22 0 1 0.01 143.57
4 Lower 0 0.0007 0 0.04 0
5 Lower 0.02 0.0005 0.35 0.01 29.88

Train Avg 0.10 0.0008 0.49 0.02 58.56

Test

1D Lower 0.01 0.0013 0.03 0.01 5.26
1F Upper 0 0.0001 0 0.04 0
2D Upper 0.13 0.0004 0.89 0.02 40.87
2F Lower 0.21 0.0006 0.63 0.00 141.11
3F Upper 0.2 0.0001 0.89 0.00 205.12
4F Upper 0.19 0 1 0.00 267.37
4 Upper 0.01 0.0008 0.13 0.02 8.19
5 Upper 0.04 0.0003 0.6 0.01 55.70

5F Upper 0.08 0.0004 0.63 0.01 83.68
5F Lower 0.04 0.0004 0.67 0.02 30.41

Test Avg 0.09 0.0004 0.55 0.01 83.77
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Table 2.11. Random training set image results.

Image Image TPF FPF LA TE LA/TE
Half

Train

1D Upper 0.71 0.0640 0.05 0.06 0.70
1D Lower 0.79 0.0762 0.04 0.08 0.51
1F Lower 0.20 0.0558 0.09 0.08 1.22
2F Upper 0.75 0.0562 0.10 0.06 1.74
3D Upper 0.34 0.0716 0.02 0.07 0.22
3D Lower 0.22 0.0588 0.11 0.08 1.35
3F Upper 0.88 0.0516 0.08 0.05 1.58
4F Lower 0.44 0.0408 0.09 0.05 1.97
5F Upper 0.60 0.0578 0.08 0.06 1.25
5F Lower 0.20 0.0583 0.07 0.07 0.99

Train Avg 0.51 0.0591 0.07 0.07 1.09

Test

1F Upper 0.11 0.0573 0.07 0.09 0.79
2D Upper 0.84 0.0264 0.44 0.03 14.94
2D Lower 0.77 0.0297 0.42 0.03 11.88
2F Lower 0.88 0.0561 0.07 0.06 1.27
3F Lower 0.68 0.0582 0.05 0.06 0.80
4F Upper 0.70 0.0410 0.07 0.04 1.75
4 Upper 0.18 0.0568 0.05 0.07 0.69
4 Lower 0.19 0.0399 0.15 0.07 2.24
5 Upper 0.28 0.0594 0.05 0.07 0.75
5 Lower 0.6 0.0593 0.11 0.06 1.66

Test Avg 0.52 0.0484 0.15 0.06 2.55

This experiment serves as an illustration that SSTATS performs well in a small

sample size problem utilizing non-orthogonal data. The CADEX algorithm yielded

excellent test set results, but clearly there was a difference between the training and

test sets as shown in the disparate representative error. The DUPLEX algorithm

created training and test sets with improved representative error in comparison with

the CADEX algorithm, but the SSTATS algorithm produced the most similar training

and test sets. The SSTATS algorithm had the lowest average test LA
TE

due to the fact

that the algorithm included representative extreme points in the training and test sets.

The randomly selected training set had a lower representative error than CADEX and
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DUPLEX, but the LT scores from the random set were extremely large indicating

the potential for poor future performance when randomly selecting a training set.

2.6 Conclusions

Selecting training and test sets of hyperspectral images for use in RPD of anomaly

detection algorithms is a very complex problem, especially when limited data is avail-

able. Previous research considered each image as a categorical variable and identified

optimized settings based on each training image. This chapter used discrete and con-

tinuous image noise characteristics to more adequately define training and test sets

of images. The hyperspectral image noise features were not orthogonal requiring a

new method of identifying well separated sets of images. An objective function was

constructed to find the most representative training and test sets with small sample

size for model validation. The space of all possible training and test sets was searched.

Both simulation and RX results produced reduced errors by applying the SSTATS

method rather than using the CADEX or DUPLEX algorithms or randomly selecting

training and test sets of images.
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III. Optimizing Hyperspectral Imagery Anomaly Detection
Algorithms through Improved Robust Parameter Design

Considering Noise by Noise Interactions

3.1 Introduction

Hyperspectral sensors provide data rich environments essential to solve numerous

problems arising in such areas as military applications, oceanography, forestry, urban

planning, and cartography [49]. The analysis of hyperspectral data often follows a

sequence of time-intensive processes between acquisition by the sensor to final analy-

sis [47]. For example, an unmanned aerial vehicle can be used in real-time to identify

panchromatic image chips containing anomalous pixels presumably containing man-

made objects [82]. The image chips provide a cue for an analyst to match specific

materials based on their reflectance spectra in the image chip with a list of objects in a

library. With the myriad of possible spectra associated with the object library as well

as the intricacies involved in atmospheric compensation [81], the task of analyzing

large amounts of image chips can be daunting. Therefore, accurate anomaly detec-

tion algorithms which identify pixels with spectrally distinct signatures as compared

with surrounding pixels, are of paramount importance as the percentage of image

chips containing true anomalous objects of interest occur with low probabilities [14].

Inaccurate anomaly detection algorithms produce image chips of background objects

for analysis which tie up valuable resources. Further, anomaly detector performance

varies due to numerous factors including altitude and scene background. Thus, the

need arises to identify robust anomaly detector settings capable of yielding consistent

responses across varied image backgrounds. Landgrebe [48] summarized this concept

for future hyperspectral algorithms:

...what is needed is an analysis process that is robust in the sense that it
would work effectively for data of a wide variety of scenes and conditions,
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and can be used effectively by users rather than only by producers of the
technology. The algorithms do not need to be simple, but they must be
simple to apply and robust against user problems [48, pg. 419].

Anomaly detectors are relatively simple to implement as they require no a priori

signature information and typically fall into two categories depending on the estimate

of the background. Local models define the background based on a local neighborhood

around a test pixel while global models typically specify a background distribution

from across the entire image, or a large section of the image [81]. Some examples

of local background models are the Reed-Xiaoli (RX) detector [67], the locally adap-

tive iterative RX detector [84] and the support vector data description (SVDD) [7].

Some global background models include the gaussian mixture model generalized like-

lihood ratio test (GMM-GLRT) [81], orthogonal subspace projection RX [13] and the

autonomous global anomaly detector (AutoGAD) [37]. Regardless of the anomaly

detector being utilized, algorithm performance is often negatively impacted by un-

controllable noise factors which introduce additional variance into the process. The

noise variables are considered uncontrollable in real-world applications, but assumed

as able to be fixed for a designed experiment. In the case of hyperspectral imagery

(HSI), the noise variables are embedded in the image under consideration. For in-

stance, two images of the same scene taken at different times of day will have different

sun angle effects introducing variability into the spectral data collected [47]. Land-

grebe [46] defined noise in remote sensing systems by the atmospheric effect, sensor

detector/preamplifier noise processes and quantization noise. Mindrup et al. [57]

developed a framework of continuous and discrete noise characteristics to describe

images based on three measurable noise characteristics: the Fisher score, the per-

cent of target pixels and the number of clusters. These characteristics, used in this

chapter, were then used to select training and test sets of images [58].
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Most, if not all, anomaly detection algorithms require a user to identify some

initial parameters. These parameters (or controls) affect the overall algorithm per-

formance. In general, anomaly detector performance can be viewed as a function

of controllable and uncontrollable factors plus random process noise, ε, that yields

a response indicating anomaly or background. Equation 3.1 shows this relationship

with x and z defined as controllable and uncontrollable factors respectively.

y = F (x, z) + ε (3.1)

The model in Equation 3.1 fits directly into the robust parameter design (RPD)

framework. RPD seeks to choose controllable parameter settings that produce re-

sponses that are not sensitive to changes attributed to noise variables [63]. Typically

RPD models assume that no quadratic noise (zizi) or noise by noise interactions (zizj

for i 6= j) exist. This chapter will refer to both as noise by noise (N×N) interactions.

The RPD model for N × N interactions is developed in this chapter and a practice

example is provided where N ×N terms are necessary.

Anomaly detection algorithm effectiveness is judged based on summary statis-

tics of the algorithm performance. Some of the more common summary statistics

used are classification accuracy and label accuracy. True positive fraction (TPF) is

a typical measure employed from an engineering, or designer, viewpoint to a system

while label accuracy (LA) reflects a user viewpoint [29]. TPF is strictly concerned

with how many pixels in the image are correctly labeled. LA assesses how many

pixels labeled as anomalous are actually anomalies. In practice, TPF must be bal-

anced by the number of false positives produced by the model. In an extreme case,

one may obtain perfect TPF by changing the classification threshold to identify ev-

erything as anomalies. Obviously, the anomaly detector would be useless since an

analyst would then have to examine every pixel within an image. In general, TPF
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is improved by allowing more indications of anomalous pixels while LA is improved

by reducing the number of anomaly indications (keeping only anomaly indications

with high confidence) thereby helping to ensure pixels labeled as anomalous are truly

anomalies. Thus, when considering LA, the total number of regions of interest (image

chips) identified might be reduced, but confidence in the pixels labeled as anomalies

is greatly improved. This chapter considers both viewpoints with a response variable

incorporating both LA and TPF.

This chapter is organized as follows. Section 3.2 reviews RPD concepts and devel-

ops the N ×N extension. Section 3.3 describes AutoGAD and the RPD experiment

performed. Results from using the standard RPD model as well as the new model

including N ×N are provided. Finally, Section 3.4 concludes the chapter.

3.2 Robust Parameter Design

RPD methods were developed to identify robust process control settings capable

of consistent performance in the presence of uncontrollable or noise factors. It is

assumed that noise factors are uncontrollable in practice, but can be controlled in

designed RPD experiments [63]. The overall true process model can be described as

a function of control variables, x, and noise variables, z.

y = G(x, z) (3.2)

Lin and Tu [51] proposed a criterion considering the process mean and variance as

an estimate for mean square error (MSE) to solve for optimal control variable settings

in RPD problems. The Lin and Tu MSE minimization criterion (LT) considers the

process mean with respect to a target value, T, and process variance, as shown below.

LTz,ε (G(x, ·)|x) = {Ez,ε (G(x, ·)|x)− T}2 + varz,ε (G(x, ·)|x) (3.3)

The vector of optimal control variable settings, x∗, can be identified by solving
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the following constrained optimization problem

x∗ = arg min
x∈D

LTz,ε (G(x, ·)|x) (3.4)

where the vector of control variables, x, is constrained to the experimental design

space, D, which is a closed and bounded compact set.

In the rest of this section, a standard RPD model, y(1), is presented. Then, an

extension to RPD considering N ×N interactions, y(2), is developed and supporting

examples are provided.

3.2.1 Standard RSM Model (y(1)).

Typically, second-order models are developed in response surface methodology

approaches to RPD and higher order control interactions are ignored due to the

sparsity of effects principle [63]. Noise by noise interactions and squared noise terms

are also assumed to be negligible. A general matrix form of the quadratic response

surface model proposed by Myers [63] to approximate G1(x, z) is

y(1) = G1(x, z) = β0 + x′β + x′Bx+ z′γ + x′∆z + ε (3.5)

where y(1) represents the standard RPD model, x is an rx × 1 vector of control

variables, z is an rz × 1 vector of noise variables, β0 is the intercept, β is an rx × 1

vector of control variable coefficients, B is an rx× rx matrix of the quadratic control

coefficients, γ is an rz × 1 vector of noise variable coefficients, ∆ is an rx × rz matrix

of control by noise interaction coefficients and ε is a random error assumed to be

normally distributed N(0, σ2Irz); rx and rz represent the number of control and noise

factors respectively. The noise variables, z = (z1, z2, . . . , zrz), are assumed to be a

vector of independent random variables with E(zi) = 0 ∀ i and var(z) = σ2
zIrz

which is easily accomplished by centering and scaling. The expected value model,
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with respect to z, for the estimated quadratic model in Equation (3.5) becomes

E(y(1)|x) = Ez,ε (G1(x, ·)|x) = β0 + x′β + x′Bx. (3.6)

For the remainder of this section, E(y(1)|x) represents short-hand notation forEz,ε (G1(x, ·)|x).

Similarly, the variance model of Equation (3.5) is given by

var(y(1)|x) = varz,ε (G1(x, ·)|x)

= (γ′ + x′∆) varz(z) (γ′ + x′∆)
′
+ σ2

= σ2
z (γ′ + x′∆) (γ′ + x′∆)

′
+ σ2. (3.7)

For the remainder of this section, var(y(1)|x) represents short-hand notation for

varz,ε (G1(x, ·)|x). The corresponding LT criterion becomes

LT (y(1)|x) = LTz,ε (G1(x, ·)|x)

= (β0 + x′β + x′Bx− T )
2

+ σz
2 (γ′ + x′∆) (γ′ + x′∆)

′
+ σ2. (3.8)

For the remainder of this section, LT ((1)|x) represents short-hand notation for LTz,ε (G1(x, ·)|x).

The noise parameters, z, effect the overall LT criterion in the variance model through

the noise parameter coefficients, γ and ∆, but the criterion is completely in terms of

control parameters, x. Thus, optimal control settings can be identified through con-

strained optimization as in Equation 3.4 [41, 69]. An extended RPD model including

N ×N interactions is now introduced.

3.2.2 RPD Model Including N ×N (y(2)).

If we allow for the assumption that cov(zi, zj) 6= 0 for some i 6= j (implying

cov(z) = Σz) and expand the response surface model to include both squared noise

terms (zizi) and noise by noise interaction terms (zizj for i 6= j), the new general

matrix form of the quadratic response surface model including N×N to approximate
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G2(x, z) is

y(2) = G2(x, z) = β0 + x′β + x′Bx+ z′γ + x′∆z + z′Φz + ε (3.9)

where y(2) represents the extended RPD model and Φ is a matrix of the N × N

coefficients and the rest of the terms are as described previously in Equation (3.5).

The expected value model, with respect to z, for the estimated quadratic model in

Equation (3.9) is

E
(
y(2)|x

)
= β0 + x′β + x′Bx+ E[z′Φz] (3.10)

Searle [72] showed when x ∼ N(0, V ), E[x′Ax] = tr(AV ) where tr signifies

the trace of a matrix. Since the noise variables are assumed to be distributed

z ∼ N(0,Σz), the expected value model becomes

E
(
y(2)|x

)
= β0 + x′β + x′Bx+ tr(ΦΣz). (3.11)

The variance model for Y (2) can be written as

var
(
y(2)|x

)
= (γ′ + x′∆)Σz(γ

′ + x′∆)′ + σ2 + var(z′Φz)

+ 2cov((γ′ + x′∆)z, z′Φz). (3.12)

The variance model in Equation (3.12) is the same as the variance model in Equa-

tion (3.7) with the addition of two terms, 2cov((γ′+x′∆)z, z′Φz) and var(z′Φz). The
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term, 2cov((γ′ + x′∆)z, z′Φz), can be rewritten by letting α′ = γ′ + x′∆ to be

2cov (α′z, z′Φz) = 2 (E(α′zz′Φz)− E(α′z)E(z′Φz))

= 2E(α′zz′Φz)

= 2E

(
m∑
i=1

m∑
j=1

m∑
k=1

αkzkzjφjizi

)

= 2
m∑
i=1

m∑
j=1

m∑
k=1

αkφjiE(zkzjzi). (3.13)

This results in three types of terms multiplied by a constant. These terms are

E(z3
a), E(z2

azb) and E(zazbzc) respectively. Anderson showed that all three types of

resulting terms are zero because with multivariate normal data, “any third moment

about the mean is zero” [2]. Therefore, the entire added covariance term is zero.

Searle [72] also showed when x ∼ N(0, V ), var(x′Ax) = 2tr(AV AV ). Therefore,

the term var(z′Φz)

var(z′Φz) = 2tr (ΦΣzΦΣz) (3.14)

Thus, the variance model for Y (2) with N ×N interactions becomes

var
(
y(2)|x

)
= (γ′ + x′∆)Σz(γ

′ + x′∆)′ + 2tr (ΦΣzΦΣz) + σ2. (3.15)

Finally, the LT criterion for the N ×N model becomes

LT (y(2)|x) = (β0 + x′β + x′Bx+ tr(ΦΣz)− T )
2

+ (γ′ + x′∆)Σz(γ
′ + x′∆)′ + 2tr (ΦΣzΦΣz) + σ2. (3.16)

3.2.3 Example.

A simple example is presented to show the impact of significant N×N interactions

if ignored. The fitted model of Myers and Montgomery [63, pg. 577] was selected as

the true function to be approximated with some additional N×N coefficients: φ11, φ22

and φ12. However, only 2 noise variables were used and the z3 terms which appeared
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in the original problem were deleted. The assumed true response relationship was

taken as

y = 30.382− 2.925x1 − 4.136x2 + 2.855x1x2 + 2.596x2
1 + 2.715x2

2

+ 2.736z1 − 2.326z2 − 0.278x1z1 + 0.893x1z2 + 1.999x2z1

+ 1.430x2z2 + φ11z
2
1 + φ22z

2
2 + φ12z1z2. (3.17)

Initially all of the N ×N coefficients (φ11, φ22 and φ12) were set to zero meaning

y(1) from Equation (3.5) and y(2) in Equation (3.9) are equivalent. N ×N interactive

effects were added to this model incrementally in the following fashion:

Φ(n) = Φ(n−1) +

 0.25 −0.125

−0.125 0.25

 ; Φ(0) =

 0 0

0 0

 (3.18)

Two replicates of a 32 factorial design for the control variables were crossed with

ten non-orthogonal noise variables producing the complete experimental design. A

residual error of σ2 = 2 was used to generate training and test data. Parameter

coefficients were fit for both RPD models. Model performance was assessed based on

R2 and absolute fit error. Absolute fit error is defined as

Ef = |LT (y|x∗)− LT (y|x∗t )| (3.19)

where the parameters in the LT model are from the true function parameters in

Equation (3.17), x∗ is the vector of true optimal control settings and x∗t is the vector

of estimated optimal control settings from either the y(1) or y(2) model. Figure 3.1

gives an example of fit error. The true LT surface is plotted across levels for a single

control variable. The true optimal point, x∗, and estimated optimal point, x∗t , are

labeled on the x-axis. The fit error is the difference in the true LT surface evaluated

at x∗ and x∗t .
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Figure 3.1. Example of fit error.

Figure 3.2 compares R2 for the y(1) and y(2) models. The plot shows the change

in R2 as N × N effects are increased. The R2 for the y(1) model drops to near 0.5

after 30 increments of increasing N ×N effects; conversely, the R2 for the y(2) model

remains high as N ×N effects are increased.

Figure 3.3 displays the Euclidean distance between the estimated optimal settings

and the true optimal settings for both RPD models, defined as location error. The

y(1) model location error is consistent with the y(2) model location error until N ×N

effects become significant (around increment 11).

Figure 3.4 displays the fit errors for the two models. When N ×N is not a large

factor, there is no significant difference between the two models in terms of fit error.

Once the N × N effects become significant, around increment 11, the y(1) model is

no longer able to approximate the surface appropriately; the estimated optimal point
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Figure 3.2. Effect of increased N ×N on R2.

from the y(1) model is always moved to an extreme of the design space and the LT

value using the true model parameters at the estimated optimum from y(1) becomes

extremely large.

3.2.4 Computer Network Performance Example.

Another example from Schmidt and Launsby [71] presented in Myers et al. [63,

prob. 6.8] is embellished to demonstrate the perils of ignoring N × N interactions

in RPD modeling. The original data is included in Appendix A: Table 1.1. This

problem is only intended to display the potential for finding differing robust control

settings due to the RPD model selected. The problem considers performance data

from an integrated circuit/packet-switched computer network using response surface

techniques. Four design variables were considered in the experiment: circuit switch

arrival rate (CS), packet switch arrival rate (PS), voice call service rate (Serv) and

79



Figure 3.3. Effect of increased N ×N on optimal settings.

the number of slots per link (Slots). Two responses were recorded, but the focus is

strictly on the fraction of voice calls blocked (BLK).

Suppose the circuit switch arrival rate and voice call service rate are treated as

noise variables. RPD models for y(1) and y(2) were generated for the BLK response.

However, since BLK is a proportion, it was first transformed by [3]

BLK ′ = arcsin(
√
BLK). (3.20)

There was a significant difference between the y(1) and y(2) models as shown in

Table 3.1. The y(2) model which includes N × N interactions explained 14% more

variance in R2 and reduced root mean square error (RMSE). The optimal number of

slots was 46 for both models while the packet switch arrival rate varied.

The actual coefficients for each model are arrayed in Table 3.2. Adding N ×N in
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Figure 3.4. Effect of increased N ×N on fit error.

Table 3.1. Computer network model fits.

y(1) y(2)

R2 0.7942 0.9081
Adj R2 0.7599 0.883
RMSE 0.0599 0.0419

PS 150 289
Slots 46 46
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the y(2) model increased the number of significant terms by three.

Table 3.2. Computer network model coefficients.

y(1) y(2)

β0 0.1189 0.1409
β1 0.1291 0.0644
β2 -0.0689 -0.0568
γ1 0.0741 0.1309
γ2 0 0.076
δ11 0.0867 0.0329
δ21 -0.0433 -0.0315
δ12 0.0501 0
δ22 0 0
B11 0 0.2284
B12 -0.0206 -0.016
B22 0 0
Φ11 N/A -0.1524
Φ12 N/A 0.0328
Φ22 N/A 0

Overall, the LT surfaces for both models displayed closely matched expected value

models. Figure 3.5 displays the LT surface for the y(1) model and Figure 3.6 provides

the LT surface for the y(2) model. Optimal settings for the y(1) and y(2) models are

denoted in both figures by a circle and diamond respectively. As was shown in this

example, considerably different optimal control settings may be identified based on

the RPD model selected.

3.3 Autonomous Global Anomaly Detector

AutoGAD is designed to isolate pixels which are spectrally different from the

background pixels. The algorithm is based on the global linear mixture model [54].

AutoGAD employs techniques to automate feature extraction, feature selection and

target pixel identification. There are several user selected parameters within the

algorithm which are detailed in section 3.3.6. In the rest of this section, the four

phases of the AutoGAD algorithm are reviewed following the description in Johnson
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Figure 3.5. LT surface plot for y(1) model.

[37]. This is followed by control and noise variable definitions and AutoGAD outputs

are described for RPD. Next, the experimental design is presented. Finally, Auto-

GAD performance using parameters selected from the y(1) and y(2) RPD models are

compared.

3.3.1 Image Preprocessing.

A hyperspectral image, also called an image cube, consists of p spectral bands of

an m × n spatial pixel representation of a sensed area. Each pixel in the spectral

dimension represents an intensity of energy reflected back to the sensor. All spectral

dimensions for a given pixel represent a potential target signature. This cube is first

reshaped from a three-dimensional image into an m × n row and p column matrix

of feature vectors. Next absorption bands are removed reducing the dimensionality

from p to g spectra. For the images considered, specific absorption bands have been
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Figure 3.6. LT surface plot for y(2) model.

specified by Smetek [75]. The result of the preprocessing step is a matrix representa-

tion of the image cube with a subset of total spectra included. This process is shown

pictorially in Figure 3.7. Here, the initial image cube contained 210 spectral bands

with only 145 remaining after absorption bands were removed [37].

Figure 3.7. AutoGAD preprocessing [56].

84



3.3.2 Step 1: Feature Extraction I.

After the absorption bands have been removed, the dimensionality is further re-

duced by utilizing Principal Components Analysis (PCA). PCA projects the data into

a subspace that produces uncorrelated components; the components accounting for

the greatest total variance are kept by the algorithm [24]. Previous anomaly detection

algorithms selected the number of bands to keep based on a user defined threshold

of accountable variance. Johnson [37] demonstrated the variability explained by the

number of spectral dimensions kept by using a single variance threshold was not ad-

equate for anomaly detection. Instead, his algorithm identifies the required number

of spectral bands using a Maximum Distance Secant Line (MDSL) algorithm. This

algorithm identifies the ”knee in the curve” of a plot of ordered eigenvalues. Next,

the data is whitened implying that the data is centered at 0 and scaled with unit

variance. The process is depicted in Figure 3.8. The total number of dimensions is

reduced from g to k (typically less than 15) [37].

Figure 3.8. AutoGAD PCA [56].

3.3.3 Step 2: Feature Extraction II.

Next AutoGAD performs independent component analysis (ICA), a linear mix-

ture model which results in vectors that are independent [36, 83]. These independent

vectors signify specific endmembers composing the image. Abundance maps for each
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endmember are created by reshaping each independent vector back to an m× n× 1

pixel image. The intended result of both feature extraction steps is a set of indepen-

dent and uncorrelated components with some components representing a combination

of specific discernable spectra in the image and others capturing noise which can be

filtered to reduce the feature set further. Thresholds are then specified to identify

which abundance maps have the highest potential in flagging anomalies. Figure 3.9

depicts the result of ICA [37].

Figure 3.9. AutoGAD ICA [56].

3.3.4 Step 3: Feature Selection.

Figure 3.9 makes it obvious to the eye that the feature vectors in map 1 spotlight

true outliers while the other abundance maps highlight noise and other non anomalous

features. AutoGAD employs a clever way to allow a computer program select the

abundance maps that are believed to contain true anomalies. Two thresholds are

defined. The first is the maximum pixel intensity observed for a feature vector. A

histogram is constructed of all pixel intensities. Chiang [18] found that anomaly pixels

typically had intensities greater than the first empty histogram bin. The second is

the potential anomaly signal to noise ratio (PA SNR). A noise floor is derived from

a histogram of pixel intensities within the specified component. Background pixels

should have values close to zero, their mean; anomalies should be sparse and create
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a long skinny tail in components containing more than just noise. The first bin to

the right of zero with no pixel intensities present is selected as the noise floor. The

resulting potential anomaly signal to noise ratio is calculated as

PA SNR = −10 log
var (potential anomaly signal)

var (noise)
. (3.21)

Johnson found that components exceeding both thresholds were most likely to

contain true anomaly pixels. These components (or abundance maps when the vector

is reshaped back into anm row× n column× 1 independent uncorrelated vector) were

kept for further processing. Figure 3.10 depicts an example of the feature selection

step; in this example, the feature selection step resulted in a dimensionality reduction

from nine to four potential anomaly maps [37]. The first spectral band displayed

in Figure 3.10 is selected as a potential anomaly map because the maximum pixel

intensity and PA SNR are both above their selected thresholds. The second spectral

band is identified as noise. The maximum intensity is much lower with a shorter tail

and the PA SNR is negative both indicating a non-anomaly map.

Figure 3.10. AutoGAD feature selection [56].
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3.3.5 Step 4: Identification.

Johnson improves classification results further by applying an adaptive Wiener

filter [50] to smooth out the background noise. The AutoGAD algorithm iteratively

utilizes an adaptive Wiener noise filter to compare each pixel value and the variance

of all pixels in a window to the variance across the entire image. Pixels with large

variance with respect to the rest of the image maintain large intensities while pixels

with small variance are assumed to be noise and are smoothed out (multiplied by

a fraction to reduce their pixel intensity). This process continues for a prespecified

number of iterations producing a final set of independent uncorrelated components.

The noise floor is set again based on the first zero bin in each histogram. All pixels

with intensities larger than this noise floor are considered as anomalies. An example

of this process is shown in Figure 3.11. In the rightmost part of Figure 3.11, white

in the combined map represents pixels correctly labeled as anomalies (TP) and gray

represents pixels misclassified as anomalies (FP) [37].

Figure 3.11. AutoGAD target pixel ID [56].
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3.3.6 Inputs - Control Variables.

AutoGAD has nine controllable settings, five of which will be varied in a designed

experiment to identify optimal operating settings. The control factors are described

below [37]:

1. Dimension adjust (A)–increases/decreases the number of dimensions kept from

MDSL

2. Max score threshold (B)–threshold from feature selection step for identifying

maps containing potential anomalies

3. Bin width SNR (C)–defines the histogram bin width used to create a SNR in

feature selection step

4. PA SNR threshold (D)–potential anomaly SNR threshold used in feature selec-

tion to identify potential anomaly maps

5. Bin width identify (E)–defines histogram bin width used to define the noise

floor in identification phase

6. Smooth iterations high (F)–number of iterations for IAN filtering when PA SNR

is above a threshold

7. Smooth iterations low (G)–number of iterations for IAN filtering when PA SNR

is below a threshold

8. Low SNR (H)–threshold to decide whether smooth iterations high or low is used

9. Window size (J)–defines the size of the neighborhood applied in the IAN process

of the identification phase
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3.3.7 Images - Noise Variables.

Data used for this experiment came from the Hyperspectral Digital Imagery Col-

lection Equipment (HYDICE) sensor Forest Radiance I and Desert Radiance II col-

lection events. Spectral data was collected by the HYDICE sensor in 210 bands

encompassing the near-ultraviolet, visible, and infrared spectrums. Due to a small

sample size, ten images were halved and used to train and test AutoGAD from the

dataset. These image halves were defined by three observable noise characteristics

identified by Mindrup et al. [57]: Fisher ratio, ratio of targets and number of clusters.

The Fisher ratio, z1, was described by Duda et al. [25, 55] is a measure for

the discriminating power of a variable. The Fisher ratio for an individual image,

i = 1, 2, . . . , I where I is the total number of images under consideration, is defined

as the average Fisher ratio across each image band, k = 1, 2, . . . , K. Thus, the Fisher

ratio for image i is

zi1 =

∑K
k=1

((
µai,k−µbi,k

)2

σ2
ai,k

+σ2
bi,k

)
K

(3.22)

where µai,k and σ2
ai,k

are the mean and variance of the anomalous pixels, a, in band k

of image i and µbi,k and σ2
bi,k

are the mean and variance of the background pixels, b,

in band k of image i, all defined from a truth mask.

The ratio of anomalous pixels, z2, was calculated if there was a truth map for each

image, i = 1, 2, . . . , I, by

zi2 =
vi
bi

(3.23)

where vi and bi represent the number of anomalous pixels and background pixels in

image i, respectively.

The number of clusters represents the number of homogenous groups of pixels

within an image. The number of clusters, z3, was recorded for each image, i =

1, 2, . . . , I using the X-means algorithm as developed by Pelleg and Moore [66].
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Each noise feature vector was standardized by

ẑk =
zk − µzk

σzk
(3.24)

where µzk and σzk represent the mean and standard deviation of the kth noise vector,

zk. The three standardized noise feature vectors were combined in an I × q noise

matrix, Z = [ẑ1 ẑ2 ẑ3], with I total images and q = 3 noise variables.

Typical experimental designs employ orthogonal designs implying the design can

be bounded by a p-dimensional hypercube. [39] Hyperspectral imagery noise variables

are different from the standard noise variables used in RPD due to the fact that the

variables cannot be controlled for a designed experiment. Images must be chosen

such that the training and test sets are representative of one another. Thus, the

training set selection methodology described in Mindrup et al. [58] was utilized.

The image noise characteristics are broken out by training and test set in Table 3.3.

Two additional images free of anomalies were considered as a separate validation set.

These additional validation images were expected to provide a better assessment of

true algorithm performance due to the assumption that most images will contain few

if any actual anomalies of interest. The validation images were also halved and also

summarized in Table 3.3.

3.3.8 Outputs.

In addition to the nine control variables, there are five relevant outputs from Au-

toGAD: processing time, true positive fraction (TPF), false positive fraction (FPF),

label accuracy (LA) and the total number of correct clusters of anomalies detected.

True positive fraction compares the number of correctly identified anomalous pixels

with the total number of actual target pixels; false positive fraction compares the

total number of falsely labeled (labeled as anomalies when they were actually back-

ground) pixels with the total number of background pixels. Label accuracy considers
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Table 3.3. Image noise characteristics.

Image Image Fisher Percent Number of
half ratio targets clusters

Training set

1D Top 1.7797 0.0043 3
1F Top 0.4335 0.0392 5
2D Top 0.0957 0.0247 4
2F Top 0.9633 0.0084 7
3D Bottom 1.4299 0.0033 3
3F Top 0.265 0.0053 8
3F Bottom 0.2153 0.0078 5
4 Bottom 2.6382 0.0275 4
5 Top 0.2658 0.0109 6
5F Top 0.1991 0.0078 10

Test set

1D Bottom 1.6265 0.0028 3
1F Bottom 0.3148 0.0225 5
2D Bottom 0.1762 0.0288 3
2F Bottom 0.9311 0.0085 7
3D Top 0.1695 0.0034 3
4F Top 0.0826 0.0046 7
4F Bottom 0.0779 0.0063 8
4 Top 1.4093 0.0156 6
5 Bottom 1.8451 0.0052 4
5F Bottom 0.7412 0.0094 7

Validation set

1C Top NaN 0 10
1C Bottom N/A 0 10
2C Top N/A 0 9
2C Bottom N/A 0 9
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the number of correctly identified anomalous pixels as a percentage of the total num-

ber of pixels labeled as anomalous. Clusters of pixels identified as anomalies were

also considered. If at least one pixel of a cluster labeled as an anomaly fell within a

true anomaly cluster, the anomalous cluster was considered to have been identified. If

none of the pixels within a cluster contained a true anomalous pixel, the entire cluster

was considered a FP as it would force an analyst to review an image chip without any

objects of interest. Occasionally a particular AutoGAD setting run against an image

would not identify any pixels as anomalies and the label accuracy for these instances

was taken as zero.

All five measures were examined but a combination of label accuracy and true

positive fraction was employed in an effort to consider both the engineering and user

points of view shown below in Equation (3.25).

y = LA+ TPF. (3.25)

The ranges for each response are in table 3.4.

Table 3.4. AutoGAD RPD response ranges.

Output Parameter Range
TPF [0, 1]
FPF [0, 1]
LA [0, 1]
Time [0,∞]
Num correct clusters [0,∞]

3.3.9 Experimental Design.

Due to the large number of variables, a screening design was used to identify the

primary factors of interest and thus, the total number of experimental runs required.

The preliminary results showed four factors that could be fixed at a single setting

yielding the best overall response across a wide array of images: Dimension Adjust,
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both Smooth parameters and Window Size. Three of the four fixed variable settings

matched those suggested by Johnson [37]. This left all five continuous control vari-

ables for further study. The ranges used for each control variable are displayed in

Table 3.5. Each control factor was varied across three equally spaced levels.

Table 3.5. AutoGAD RPD factor ranges.

Input Parameter Type Classification Test Range
Dimension Adjust (A) Discrete Fixed -2
Max Score Threshold (B) Continuous Control [6,14]
Bin Width SNR (C) Continuous Control [0.01,0.09]
PA SNR Threshold (D) Continuous Control [6 14]
Bin Width Identify (E) Continuous Control [0.01,0.09]
Smooth Iterations High (F) Discrete Fixed 100
Smooth Iterations Low (G) Discrete Fixed 20
Low SNR (H) Continuous Control [6,14]
Window Size (J) Discrete Fixed 3

Before applying any regression methods, the control variables were all transformed

to coded variables in [-1,1]. This step was performed using

xi,j =
ξi,j − [max(ξi,j) + min(ξi,j)]/2

[max(ξi,j)−min(ξi,j)]/2
(3.26)

where xi,j is exemplar i of the coded noise variable j and ξi,j is the original value [63].

A face centered cube (FCC) design was selected for the control variables allowing

estimation of quadratic effects with five center runs; an example of the FCC for two

control variables in coded variables is in Table 3.6. The FCC was then crossed with

ten training images and replicated ten times for a total of 4250 experimental runs.

Replications were necessary because the ICA algorithm applies a random component

to AutoGAD. Borror et. al. [10] showed that while an FCC is not the most economical

experimental design, it is comparable in terms of prediction error to other D-optimal

and G-optimal designs considered for statistical designs with noise variables. The

design considered here is slightly modified from that in Borror et. al. due to the
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crossed nature of the noise variables with the control FCC.

Table 3.6. Example FCC for two control variables.

x1 x2

-1 -1
1 -1
-1 1
1 1
-1 0
1 0
0 -1
0 1
0 0
0 0
0 0
0 0
0 0

Multicollinearity issues arose whenN×N was introduced to the model. A heuristic

was applied to remove columns with high variance inflation factors (VIF). First,

the VIF for all columns in the y(2) model was calculated. If at least one VIF was

greater than ten, the column with the largest VIF was deleted prior to fitting a

regression model. In case of a tie, higher order terms were removed first. This

process was repeated until all VIF values were less than ten. For this problem, three

columns were deleted due to high VIF scores: Fisher ratio×Fisher ratio (K*K), Fisher

ratio×number of clusters (K*M) and percent targets×number of clusters (L*M). The

three remaining potential N ×N terms were added to the regression model. Stepwise

regression was then used to fit the y(1) and y(2) models from equations (3.5) and (3.9)

respectively.

3.3.10 Results.

Table 3.7 gives the overall model fits for the y(1) and y(2) models as well as the

respective parameter estimates. Coefficients that were insignificant in both models
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were not included for clarity. The overall R2 increased from 0.47 in the y(1) model to

0.63 in the y(2) model with a similar change in the adjusted R2 values. Root mean

square error was also reduced from 0.36 to 0.30 by adding the N×N terms. Including

N ×N in the model added five terms: bin width for identification×Low SNR (E*H),

max×max (B*B), Fisher ratio×percent of targets (K*L), percent of targets×percent

of targets (L*L) and number of clusters×number of clusters (M*M). The coefficients

for noise terms varied from one model to the other. This was due to the fact that the

noise terms were not orthogonal to each other.

Both models were significant with p-values less than 0.0001. However, both models

displayed significant lack of fit due to nonconstant variance. This can be seen in the

residual versus predicted plot for y(1) in Figure 3.12 (y(2) had a similar plot). The

nonconstant variance was an artifact of the bounded response variables. Although

the regression model assumption of constant variance was invalid, the models were

still useful in selecting optimal AutoGAD settings.

Figure 3.12. AutoGAD y(1) residual versus predicted plot.

Optimal settings for the appropriate model, y(1) or y(2), were calculated using

Equation (3.4). The optimal settings for both models as well as the settings sug-

gested by Johnson [37] are in Table 3.8. In general, the optimal settings for the
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Table 3.7. AutoGAD fits and coefficient estimates.

Term y(1) model y(2) model
R2 0.47 0.63
Adjusted R2 0.47 0.63
Root Mean Square Error 0.36 0.30

Intercept 1.146 1.443
Max (B) -0.062 -0.062
Bin Width (C) 0.012 0.012
PA SNR (D) 0.013 0.013
Bin Width ID (E) 0.077 0.077
Low SNR (H) 0.026 0.026
Fisher Ratio (K) -0.039 -0.015
Percent Targets (L) 0.288 0.543
Number of Clusters (M) -0.025 0.011
B*C -0.017 -0.017
B*E 0.048 0.048
C*D 0.015 0.015
C*E -0.014 -0.014
E*H 0.010
B*K -0.043 -0.043
B*L 0.053 0.053
B*M 0.108 0.108
C*L -0.030 -0.030
E*K -0.077 -0.077
E*L -0.013 -0.013
H*K 0.013 0.013
H*L -0.013 -0.013
H*M 0.022 0.022
B*B -0.033
E*E -0.056
K*L -0.023
L*L -0.257
M*M -0.058
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y(1) and y(2) models varied across all five continuous control variables considered.

Johnson’s settings, selected after extensive experience with the AutoGAD algorithm,

were chosen for a higher true positive rate while still considering the other responses.

Johnson developed the suggested AutoGAD settings based on algorithm performance

observed on the entire set of images and thus has an advantage over those selected

using either RPD model since both RPD models only trained on half of the images.

Therefore, a direct comparison between the results from either the y(1) or y(2) model

and Johnson’s settings is not possible. Results on image halves from Johnson’s set-

tings are only provided to show the potential change observed when applying an RPD

model.

Table 3.8. AutoGAD optimal settings.

Johnson y(1) y(2)

Dim (A) 0 -2 -2
Max (B) 10 10.9013 8.7696
Bin Width (C) 0.05 0.09 0.0633
PA SNR (D) 2 1 6
Bin Width ID (E) 0.05 0.0248 0.0685
Smooth High (F) 100 100 100
Smooth Low (G) 20 20 20
Low SNR (H) 10 10.0933 14
Window (J) 3 3 3

Tables 2.1, 2.2 and 2.3 (Appendix B) provide detailed results for each image. On

average, results from the y(1) model closely mirrored those of Johnson’s optimal set-

tings. Both had an overall average TPF of 0.68 with LAs of 0.44 and 0.46 respectively.

The averages for the y(2) model were 0.67 for TPF and 0.61 for LA. Thus, the settings

identified by including N ×N in the y(2) model improved label accuracy by roughly

15% while only losing 1% in true positive fraction. The performance difference is

spotlighted by comparing the results graphically from all three settings on individual

images. “Truth masks” for each image were created at the Air Force Institute of
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Technology by zooming in on each image and “truthing” individual pixels based on

best guesses. Figure 3.13 depicts the “truth mask” for upper half of the 1D image

(training set) as well as the performance from all three settings. Pixels shaded black

in the figures represent true positives while pixels shaded red represent false positive

indications. The y(2) model’s increased label accuracy is reflected by the significant

reduction in false positives in comparison to the Johnson and y(1) models.

(a) Truth mask (b) Johnson results

(c) y(1) model results (d) y(2) model results

Figure 3.13. ARES1D upper half AutoGAD results.

Figure 3.14 depicts similar results from the lower half of image 4F. This image

was in the test set and reveals the importance of the y(2) model by including N ×N

interactions. A simple RPD model, y(1), is capable of identifying most of the actual

anomalies in the image, but at a cost of high false positives. The settings from

Johnson again yield similar results to the y(1) model. The results from the y(2) model
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show a large reduction in false positives while improving the total number of true

anomalous clusters correctly identified.

(a) Truth mask (b) Johnson results

(c) y(1) model results (d) y(2) model results

Figure 3.14. ARES4F lower half AutoGAD results.

The y(2) model settings were more selective in identifying anomalous pixels. As

such, there were a few instances in which the overall false positives were greatly

reduced but at the cost of true positives. Figure 3.15 depicts an example in which

this occurred on image 3F. In this image, the y(2) model correctly identifies one

anomalous cluster while the y(1) model correctly identifies 2 clusters and the Johnson

settings label nine anomalous clusters. There is a clear improvement from the y(1) to

the y(2) model. The settings provided by Johnson yield better results. However, a

one-to-one comparison between Johnson’s settings and the RPD model settings from

y(1) or y(2) do not provide a fair assessment as Johnson’s settings were trained on the
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entire set of images. The false alarm rate for the Johnson settings and the y(1) model

are drastically larger than the false alarm rate from the y(2) model. This example

shows the utility of considering both true positives, engineering solution, and label

accuracy, user viewpoint. Ignoring the importance of both viewpoints results in a

large number of image chips containing only background, no man-made objects, for

the analyst to assess.

(a) Truth mask (b) Johnson results

(c) y(1) model results (d) y(2) model results

Figure 3.15. ARES3F lower half AutoGAD results.

While individual image results varied on average, the settings identified by the y(2)

model provided more accurate results with only a slight difference in TPF. In practice,

an analyst would spend less time checking false anomalies and would be able to process

more images. Additional information was gleaned from a validation experiment four

images free of true anomalous clusters. The anomaly free validation images were

101



considered due to the assumption that true anomalies are sparse and most images

will contain no true anomalies. Average FPFs of 0.001 and 0.003 were observed for

the y(1) model and Johnson settings respectively. Increased label accuracy achieved

by the y(2) model resulted in an average FPF of only 0.0007.

Ten more validation images were considered that were collected from various alti-

tudes higher than the ones used to train the y(1) and y(2) models. Table 3.9 gives the

average TPF, FPF and LA for the training, test and two validation sets for the y(1),

y(2) and Johnson settings respectively. The results from the higher altitude test im-

ages suggest, unfortunately, that robust settings need to be based on sensor altitude.

However, it is of interest to note that the y(2) model performs better than the y(1)

model on both sets of validation images. Additionally, the y(2) model yielded lower

FPF than Johnson’s settings in the validation images.

Table 3.9. Average results for y(1), y(2) and Johnson settings.

Model TPF FPF LA

Train
y(1) 0.62 0.0100 0.40
y(2) 0.67 0.0037 0.65

Johnson 0.66 0.0100 0.46

Test
y(1) 0.74 0.0074 0.49
y(2) 0.66 0.0042 0.58

Johnson 0.70 0.0100 0.45

Val - high altitude
y(1) 0.30 0.0184 0.17
y(2) 0.46 0.0096 0.35

Johnson 0.56 0.0134 0.33

Val - no anomalies
y(1) N/A 0.0013 N/A
y(2) N/A 0.0007 N/A

Johnson N/A 0.0032 N/A

3.4 Conclusions

In this chapter, we derived the expected value and variance models for RPD with

N ×N considered. This higher order model, y(2), was then used to identify optimal

settings for AutoGAD across various HYDICE images. The settings found from the
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N×N model improved label accuracy and false alarm rate while maintaining a consis-

tent true positive rate as compared with the optimal settings found using a standard

RPD model, y(1). Further inspection of clusters of falsely identified anomalous pixels

(FP) also revealed a reduction in the average number of falsely identified image chips

requiring a second look from an analyst or the cueing of a sensor, whether aerial or

space-borne, to gain further insight on the area of interest when including N × N

terms.
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IV. Concluding Remarks

This dissertation presents RPD concepts related to HSI anomaly detection algo-

rithms. The research areas described are broad enough that applications beyond the

realm of HSI can incorporate the ideas and achieve significant improvements. The

chapters in this document provide a methodology for implementing each concept.

4.1 Original Contributions

Chapter 2 describes a method for selecting hyperspectral image training and test

subsets from a small sample size yielding consistent RPD results based on three noise

features: Fisher ratio, percent targets and number of clusters. These subsets are not

necessarily orthogonal, but still provide improvements over random training and test

subset assignments by maximizing the volume and average distance between image

noise characteristics of their respective sets. The small sample training and test selec-

tion (SSTATS) method was contrasted with randomly selected training sets as well

as training sets chosen from the CADEX and DUPLEX algorithms through the use

of simulations and an application involving the RX anomaly detector. When consid-

ering training sets from a small sample size, if model validation beyond the range of

variables in the training set is a concern, the SSTATS algorithm provides superior

performance in contrast with CADEX, DUPLEX or randomly selected training sets.

Chapter 3 removes the standard RPD assumption that squared noise terms and

noise by noise interactions are negligible by deriving the mean and variance models for

RPD with N×N considered. This higher order model, y(2), was then used to identify

optimal settings for AutoGAD across various HYDICE images. The settings found

from the N×N model improved label accuracy and false alarm rate while maintaining

a consistent true positive rate as compared with the optimal settings found using a

standard RSM model, y(1). A significant reduction in the average number of falsely
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identified image chips was observed by an inspection of clusters of falsely identified

anomalous pixels (FP) when including N × N terms. This reduction leads to fewer

images requiring a second look from an analyst or the cueing of a sensor, whether

aerial or space-borne, to gain further insight on the area of interest.

4.2 Suggested Future Work

In the course of studying RPD concepts, some potential extensions to this research

became apparent. Some potential extensions to this research include:

• Consider new subset size rather than N = n
2
. It was assumed that training and

test subsets would contain the same number of elements or images. CADEX and

DUPLEX are both capable of creating training and test sets with varied sizes.

SSTATS could easily be adapted to have unequal training and test subsets. A

study is suggested to assess the predictive power of models based on varied

sizes of training and test sets to identify the optimal training to test set ratio

currently assumed as 1:1.

• Expand SSTATS to include across subset measures. SSTATS currently creates

training and test subsets based solely on within measures, measures that con-

sider volume or spacing within a given subset. Adding a measure to assess the

difference across the training and test subsets could provide improved results.

• Use SSTATS to compare algorithm performance. This research laid the frame-

work to identify optimal settings for anomaly detector algorithms allowing a

comparison to select the “best” algorithm. The next logical step would be

to actually compare anomaly detector algorithm performance when both algo-

rithms are trained from the same training set.
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Appendix A. Computer Network Example Data

Table 1.1. Computer network data.

Obs CS PS Serv Slots BLK
1 2 150 120 34 0
2 2 150 120 46 0
3 2 150 240 34 0
4 2 150 240 46 0
5 2 450 120 34 0.016
6 2 450 120 46 0
7 2 450 240 34 0.031
8 2 450 240 46 0.003
9 6 150 120 34 0.012
10 6 150 120 46 0
11 6 450 120 46 0.016
12 6 300 180 40 0
13 4 300 180 40 0
14 4 300 180 52 0
15 4 300 180 40 0.016
16 4 300 180 40 0.005
17 4 300 180 40 0.011
18 4 300 180 40 0.02
19 4 300 180 40 0.017
20 4 300 180 40 0.036
21 4 300 180 40 0.007
22 5 400 210 43 0.07

Continued on next page.
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Table 1.2. Computer network data (cont).

Obs CS PS Serv Slots BLK
23 5 400 210 43 0.082
24 5 400 150 37 0.067
25 5 400 150 37 0.084
26 5 400 150 43 0.027
27 5 400 210 40 0.106
28 5 400 210 40 0.125
29 4 400 210 37 0.084
30 4 400 210 37 0.101
31 4 400 210 40 0.063
32 4 400 210 40 0.057
33 4 400 180 40 0.035
34 5 400 180 40 0.074
35 5 400 180 40 0.077
36 5 400 180 37 0.11
37 5 400 180 37 0.139
38 4 400 180 37 0.057
39 4 400 180 37 0.065
40 3 400 210 37 0.017
41 3 400 210 43 0.003
42 3 400 150 37 0.003
43 3 400 150 43 0.005
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Appendix B. Tables of AutoGAD Image Results
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Appendix C. Original HYDICE Images

(a) Upper Half (b) Lower Half

Figure 3.1. Image 1D.

(a) Upper Half (b) Lower Half

Figure 3.2. Image 1F.
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(a) Upper Half (b) Lower Half

Figure 3.3. Image 2D.

(a) Upper Half (b) Lower Half

Figure 3.4. Image 2F.

(a) Upper Half (b) Lower Half

Figure 3.5. Image 3D.
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(a) Upper Half (b) Lower Half

Figure 3.6. Image 3F.

(a) Upper Half (b) Lower Half

Figure 3.7. Image 4F.

(a) Upper Half (b) Lower Half

Figure 3.8. Image 4.
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(a) Upper Half (b) Lower Half

Figure 3.9. Image 5.

(a) Upper Half (b) Lower Half

Figure 3.10. Image 5F.
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Appendix D. Artificial Neural Networks in Engineering
(ANNIE) 2010 Conference Paper
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ABSTRACT 

Hyperspectral imagery (HSI) has emerged as a valuable tool supporting 

numerous military and commercial missions. Environmental and other effects 

diminish HSI classification accuracy. Thus there is a desire to create robust 

classifiers that perform well in all possible environments. Robust parameter 

design (RPD) techniques have been applied to determine optimal operating 

settings.  Previous RPD efforts considered an HSI image as categorical noise.  

This paper presents a novel method utilizing discrete and continuous image 

characteristics as representations of the noise present.  Specifically, the number 

of clusters, fisher ratio and percent of target pixels were used to generate image 

training and test sets.  Replacing categorical noise with the new image 

characteristics improves RPD results by correctly accounting for significant 

terms in the regression model that were otherwise considered categorical 

factors.  Further, traditional RPD assumptions of independent noise variables 

are invalid for the selected HSI images. 

 

Introduction: 
Hyperspectral imagery (HSI) has emerged as a valuable tool supporting 

numerous military and commercial missions including counter concealment, camouflage 

and deception, combat search and rescue, counter narcotics, cartography and meteorology 

to name a few (Manolakis (2002); Landgrebe (2003)). A hyperspectral image, also called 

an image cube, consists of k spectral bands of an m by n spatial pixel representation of a 

sensed area. Each pixel in the spectral dimension represents an intensity of energy 

reflected back to the sensor. All spectral dimensions for a given pixel represent a 

potential target signature. HSI, by its very nature, can provide a method for identifying at 

most (n - 1) unique spectral signals, where n is the number of independent bands in an 

HSI image cube. This is (n - 1) rather than n because one band is used to define the 

background or noise present in an image. Since HSI contains typically hundreds of bands, 

this number of signals or targets for classification can be large although bands affected by 

atmospheric absorption contain little useful information and must be removed and bands 

that are close to each other are typically correlated. 

Davis (2009) describes some pitfalls when performing target classification on 

hyperspectral images. For instance, the spectral library will most often not contain every 

possible object, manmade or other to be classified. Some objects may be concealed or 

disguised to make the spectral signature different from what is contained in the library. In 

addition, environmental effects such as time of day, relative humidity and imaging angle 

greatly impact the data reflectance values observed by a sensor. Finally, target prior 
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probabilities can be very small in comparison to the number of pixels being considered. 

This leads to a desire to create robust classifiers that perform well in all possible 

environments or to make very specialized systems that are only used on very specific 

areas to ensure the spectral library containing spectral signatures of the materials within 

an image is as accurate and separable as possible. 

Typical hyperspectral target detection algorithms can be separated into two 

classes, anomaly detection and signature matching. Signature matching compares the 

observed intensities for all bands of an individual pixel with a known spectral signature 

contained in a library. Anomaly detection compares an individual pixel’s mean observed 

intensity with the mean and variance of the background. Pixels which are statistically 

different from the background are identified as anomalies. 

Previous efforts to develop robust HSI classifiers have utilized robust 

parameter design (RPD) techniques where each image was considered a categorical noise 

variable.  This paper presents a novel method utilizing discrete and continuous image 

characteristics as representations of the noise present in an image.  Specifically, the 

number of unique clusters within an image, fisher ratio and percent of target pixels were 

used to identify image training and test sets. Replacing categorical noise with the new 

image characteristics improves RPD results by correctly accounting for significant terms 

in the regression model that were otherwise considered categorical factors. In addition, it 

is simpler to create models when the noise variables are not categorical.  

 

Robust Parameter Design 
Genichi Taguchi proposed an innovative parameter design approach for 

reducing variation in products and processes in the 1980's. Montgomery (2009) describes 

RPD as an approach to experimental design that focuses on selecting control factor 

settings that optimize a selected response while minimizing the variance due to noise 

factors at that optimum. Control factors are those factors that can be modified in practice 

while noise factors are often unexplained or uncontrollable in practice. These noise 

factors can typically be controlled at the research and development level allowing RPD to 

be performed. There are two methods to model RPD, crossed arrays and combined 

arrays. This paper will focus on the combined array or response surface method. 

RSM methods focus on the roles of control variables on mean and variance in 

order to provide an estimate at any location of interest. Typically, second-order models 

are developed when using RSM approaches and higher order interactions are ignored due 

to the sparcity of effects principle; noise by noise interactions are also assumed to be 

negligible. A general matrix form of the fitted quadratic response surface model is in the 

following equation (Myers and Montgomery, 2002) 

 

 0
ˆ( , ) ' ' ' 'y x z x x x z x zβ β γ ε= + + Β + + ∆ +  (1) 

 
where β0 is the model intercept, β is a vector of the control variable coefficients, Β is a 

matrix of the quadratic control coefficients, γ  is a vector of noise variable coefficients, 

∆ is a matrix of the control by noise interaction coefficients and ε is the pure error of the 

model which is assumed to be 
2

(0, )NID σ . The mean model for the equation can easily 

be found since the noise variables, z, are assumed to be random variables with ( ) 0E z =

and
2

var( )
z

z σ= ; further, the noise variables are considered coded random variables 

centered at zero with limits a±  representing high and low settings for a particular noise 
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variable and cov( , ) 0,    
i j

z z i j= ∀ ≠ . Thus the general form of the mean model only 

includes the control variables and is shown in Montgomery (2009) to be
 

 

 0
ˆ[ ( , )] ' 'E y x z x x Bxβ β= + +  (2) 

 

Likewise, the variance model can be found by treating z as a random variable and 

applying the variance operator to the equation above. The variance model becomes 

 

 
2 2ˆvar[ ( , )] ( ' ) ' ( ' )
z

y x z x xγ σ γ σ= + ∆ + ∆ +  (3) 

 

where 
2σ  is the Mean Square Error found from performing a regression on the design 

and 
2

z
σ  is the variance-covariance matrix of z typically assumed to be 1 since the 

variables are coded. (Myers and Montgomery, 2002) 

 

Categorical Noise 
Brenneman and Myers (2003) developed a methodology for treating noise 

variables categorically for some situations such as when considering different suppliers 

or brands of equipment as noise. They assert that fewer assumptions are required when 

considering noise as a categorical variable. Multiple continuous noise variables can be 

combined into a single categorical noise variable with 1
z

r +  categories where

(category )
m

P m p= . It is assumed that these probabilities are known a priori. 

Further, the distribution of this single categorical noise variable is multinomial. The 

variance-covariance matrix,
2

z
σ , from equation (3) becomes   

 

 

1 1 1 2 1

2 1 2 2 2
2

1 2

(1 )

(1 )

(1 )

r
z

r
z

z

r r r r
z z z z

p p p p p p

p p p p p p

p p p p p p

σ

− − −

− − −
=

− − −

 
 
 
 
 
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

. (4) 

 

  

The prior probabilities required to characterize the variance-covariance matrix 

might not be available in all situations. Brenneman and Myers also recognized it is 

possible for robust control settings to be dependent on the
m

p . Moreover, the true noise 

in a hyperspectral image is better characterized by the observable features within an 

image.  Thus, the proposed noise methodology was developed. 

 

Image Noise Methodology 
 There are several potential observable noise characteristics within an image. 

This paper will focus on three characteristics:  Fisher score, percent of target pixels and 
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number of clusters. These are not the only characteristics but rather a subset that can be 

easily calculated within a training set with truth information. Fishers ratio is defined by 

Lohninger (1999) as a measure for the discriminating power of a variable 

 

 

2 2

1 2

1 2

f
µ µ

σ σ

−
=

+
 (5) 

 

where 1µ  and 1σ  are the mean and variance of the target class and 2µ  and 2σ  are the 

mean and variance of the background both defined in a truth matrix. The percent of target 

pixels can be calculated, if there is a truth map, for each image under test defined as 

 

 
i

i
i

v
t

w
=  (6) 

 

where iv and iw  represent the number of target pixels and background pixels in image i 

respectively. Clustering was performed using Williams (2007) Matlab ® code of X-

means as described by Pelleg and Moore (2000).  

Unfortunately, these observed noise characteristics do not fit into the traditional 

experimental designs since the observations are typically correlated and not orthogonal. 

Figure 1 shows a classical 22 factorial design in circles and an example of an observed set 

of design points in triangles.  

 

 

 
Figure 1:  Factorial design (circles) versus observed design (triangles) 

 

The decision for which images to include in the training and test sets is not 

trivial. Identifying a training and test set of images can be considered a combinatorial 

optimization problem. Formally, a combinatorial optimization problem is defined as a 

pair ( , )fΩ where Ω  is the set of feasible solutions consisting of all possible 
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combinations of images and f  is the cost function (Hall, 2009). Now let 
jR  be the range 

for noise factor 
0

1, 2, 3,j n= …  within a given set of images, ω . Further, let the cost 

function be defined for the previously defined noise variables (1-fisher’s score, 2-percent 

target, 3-number of clusters) as 

 

 1 2 3
f R R Rω = + +  (7) 

 

summing the total range across all three noise variables for a given set of images, ω . Let 

d
i
 be an indicator variable for image i such that 

 

 

1 if  is in the training set

0 otherwise
i

i
d

d =




 (8) 

 

The combinatorial optimization problem can thus be solved as a binary integer 

program  

 

 

1 2 3

1

max  

ST.  
n

i

i

f R R R

d k

ω
ω

=

= + +

=∑
 (9) 

 

where k is the number of images to be used in training and n is the total number of 

images available. This formulation can result in multiple alternate optimal training sets 

since some images have extreme values of all noise characteristics. Thus, another binary 

integer program can be solved on the set of alternative optimals to choose a test set of 

images. Let ω  be the complement of ω  for optimal training sets. Assuming all images 

are to be used in either the training or test set, ω  is the set of test images to go with a 

selected set of training images ω . Let 
i

g  be the indicator variable for image i in the test 

set and m be the number of images to include in the test set. Then equation (9) can be 

adapted to solve for the optimal set of training and test images.  

 

 

1 2 3

1

max  

ST.  
n

i
i

f R R R

g m

ω
ω

=

= + +

=∑
 (10) 

 

Results 

Training and test images were selected from toy data sets as well as eight 

images from the Hyperspectral Digital Imagery Experiment (HYDICE). Each image was 

halved to double the total number of images to 16; image 1 became image halves 1 and 2, 
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image 2 became image halves 3 and 4 and so on. The observed noise values for all 16 

image halves are in Table 1.  

The algorithm selected images {1,2,4,6,7,8,10,15} for training and 

{3,5,9,11,12,13,14,16} for test. Note this puts both halves of images one and four in 

training and six and seven in test. Figure 2 shows a pair wise comparison of the training 

and test image noise characteristics. There is typically a training and test image near each 

observed extreme of the chart. This provides adequate separation of the noise 

characteristics to perform RPD. 

 

 
Table 1:  Observed image noise characteristics 

 
 

 

 

Im
a

g
e

Im
a

g
e

 S
iz

e

F
is

h
e

r

%
 T

a
rg

e
t

#
 C

lu
st

e
rs

1 28855 1.12 0.0298 3

2 29054 1.11 0.0177 8

3 11128 2.74 0.0077 3

4 11232 2.74 0.0086 3

5 10908 1.10 0.0795 10

6 11016 1.10 0.0803 10

7 12276 1.04 0.0506 9

8 12276 1.04 0.0498 9

9 15200 1.12 0.0002 4

10 15360 1.12 0.0004 10

11 23712 2.35 0.0366 8

12 23712 2.09 0.0446 8

13 15368 1.10 0.0637 7

14 15368 1.10 0.0564 10

15 8160 1.07 0.0000 9

16 8240 1.05 0.0015 10
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Figure 2:  Training and test image pair wise noise characteristics 

 
These images were then used in an RPD of the Autonomous Global Anomaly 

Detector (AutoGAD) (see Johnson (2008) for the specifics of this algorithm). The 

experimental design mirrored previous RPD work by Davis (2009) and Miller (2009) 

using D-optimal designs from Design Expert (see Davis (2009) for specific design 

information). However, a one-to-one comparison of results will not be presented as Davis 

and Miller did not halve the images, but rather trained and tested on the complete set of 

images. Fitting a regression model to the results from training yielded some interesting 

analysis of variance results. The assumption that no noise by noise interaction exists was 

not true. R-squared values were as low as 0.5 without noise by noise interactions and 

were improved by as much as 0.26 when the interactions were included. Table 2 

compares the R-squared values with and without noise by noise interactions on four 

AutoGAD outputs: time, true positive fraction (TPF), false positive fraction (FPF) and 

target fraction percent (TFP). True positive fraction compares the number of correctly 

identified pixels with the total number of actual target pixels; false positive fraction 

compares the total number of falsely labeled (labeled as targets when they were actually 

noise) pixels with the total number of background pixels. Finally, target fraction percent 

measures AutoGAD's performance on target clusters. If AutoGAD correctly identifies at 

least one pixel of a true target cluster, it is counted as a success. TFP is the ratio of these 

successes to the total number of true target clusters. 
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Table 2:  R-squared values for AutoGAD regression models 

 
 

Conclusions and Future Work  
 In this paper, we developed a heuristic to identify training and test sets of 

hyperspectral images for use in RPD based on three continuous noise characteristics of 

the images. The training and test sets were shown to provide excellent separation of 

observed noise characteristics. The heuristic was applied to eight images for anomaly 

detection by AutoGAD.   

Future research will include a new mean and variance model with noise by 

noise interactions to generate a more adequate regression model for RPD. This model 

will be compared with a neural network representation. Also, D-optimal designs will be 

compared with the image noise methodology proposed to assess performance 

characteristics such as time to generate a set of training and test images as well as the 

separation of the images within each set.  
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